Skip to main content
Log in

The isobaric heat capacities and thermodynamic properties of ionic liquid 1-ethylpyridinium bis(trifluoromethylsulfonyl)imide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ionic liquid 1-ethylpyridinium bis(trifluoromethylsulfonyl)imide ([C2py][NTf2]) was synthesized and characterized by 1H NMR spectroscopy, 13C NMR spectroscopy and thermal gravity analysis. The molar heat capacities of [C2py][NTf2] were measured using a heat-flow calorimeter with “3D Calvet” calorimetric sensor from (293 to 312) K. The experiment value of molar heat capacity 502.15 J K−1 mol−1 at 298.15 K was obtained. Moreover, the estimation values of molar heat capacity were calculated by using 4 methods at 298.15 K, and the result showed the Paulechka et al.’s method was more appropriate for predicting the molar heat capacity of IL [C2py][NTf2], and the error was less than 2%. In addition, the freezing point T * was calculated by freezing point depression, which was approximately equal to experimental value 305.08 K. The molar enthalpy of fusion Δf H m = 26.77 kJ mol−1, molar melting entropy Δde S m = 90.60 J mol−1 K−1 and the freezing constant K f were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Calvar N, Gómez E, Macedo EA, Domínguez Á. Thermal analysis and heat capacities of pyridinium and imidazolium ionic liquids. Thermochim Acta. 2013;565:178–82.

    Article  CAS  Google Scholar 

  2. Rocha MAA, Bastos M, Coutinho JAP. Santos LMNBF. Heat capacities at 298.15 K of the extended [CnC1im][Ntf2] ionic liquid series. J Chem Thermodyn. 2012;53:140–3.

    Article  CAS  Google Scholar 

  3. Lin PY, Soriano AN, Leron RB, Li MH. Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: measurements and correlations. J Chem Thermodyn. 2010;42:994–8.

    Article  CAS  Google Scholar 

  4. Bösmann A, Datsevich L, Jess A, Lauter A, Schmithz C, Wasserscheid P. Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem Commun. 2001;23:2494–5.

    Article  Google Scholar 

  5. Rodríguez-Cabo B, Francisco M, Soto A, Arce A. Hexyl dimethylpyridinium ionic liquids for desulfurization of fuels. Effect of the position of the alkyl side chains. Fluid Phase Equilib. 2012;314:107–12.

    Article  Google Scholar 

  6. Arce A, Francisco M, Soto A. Evaluation of the polysubstituted pyridinium ionic liquid [hmmpy][Ntf2] as a suitable solvent for desulfurization: phase equilibria. J Chem Thermodyn. 2010;42:712–8.

    Article  CAS  Google Scholar 

  7. Gao HS, Li YG, Wu Y, Luo MF, Li Q, Xing JM, Liu HZ. Extractive desulfurization of fuel using 3-methylpyridinium-based ionic liquids. Energy Fuels. 2009;23:2690–4.

    Article  CAS  Google Scholar 

  8. Verdía P, González EJ, Rodríguez-Cabo B, Tojo E. Synthesis and characterization of new polysubstituted pyridinium-based ionic liquids: application as solvents on desulfurization of fuel oils. Green Chem. 2011;13:2768–76.

    Article  Google Scholar 

  9. Han XX, Armstrong DW. Ionic liquids in separations. Acc Chem Res. 2007;40:1079–86.

    Article  CAS  Google Scholar 

  10. Raeissi S, Peters CJ. A potential ionic liquid for CO2-separating gas membranes: selection and gas solubility studies. Green Chem. 2009;11:185–92.

    Article  CAS  Google Scholar 

  11. Requejo PF, Calvar N, Domínguez Á, Gómez E. Comparative study of the LLE of the quaternary and ternary systems involving benzene, n-octane, n-decane and the ionic liquid [BMpyr][NTf2]. J Chem Thermodyn. 2016;98:56–61.

    Article  CAS  Google Scholar 

  12. Casás LM, Plantier F, Pineiro MM, Legido JL, Bessières D. Calibration of a low temperature calorimeter and application in the determination of isobaric heat capacity of 2-propanol. Thermochim Acta. 2010;507–508:123–6.

    Article  Google Scholar 

  13. Casás LM, Legido JL, Pozo M, Mourelle L, Plantier F, Bessières D. Specific heat of mixtures of bentonitic clay with sea water or distilled water for their use in thermotherapy. Thermochim Acta. 2011;524:68–73.

    Article  Google Scholar 

  14. Coulier Y, Ballerat-Busserolles K, Mesones J, Lowe A, Coxam J. Excess molar enthalpies and heat capacities of 2-methylpiperidine − water and N–methylpiperidine − water systems of low to moderate amine compositions. J Chem Eng Data. 2015;60:1563–71.

    Article  CAS  Google Scholar 

  15. Dong L, Zheng D, Nie N, Li Y. Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O + [DMIM]DMP system. Appl Energy. 2012;9:326–32.

    Article  Google Scholar 

  16. Calvar N, Gómez E, Macedo EA, Domínguez Á. Thermal analysis and heat capacities of pyridinium and imidazolium ionic liquids. Thermochim Acta. 2013;565(565):178–82.

    Article  CAS  Google Scholar 

  17. Wei J, Chang C, Zhang YY, Hou SY, Fang DW, Guan W. Prediction of thermophysical properties of novel ionic liquids based on serine [C n mim][Ser] (n = 3, 4) using semiempirical methods. J Chem Thermodyn. 2015;90:310–6.

    Article  CAS  Google Scholar 

  18. Ma XX, Wei J, Zhang QB, Tian F, Feng YY, Guan W. Prediction of thermophysical properties of acetate-based ionic liquids using semiempirical methods. Ind Eng Chem Res. 2013;52:9490–6.

    Article  CAS  Google Scholar 

  19. Xing NN, Dai B, Ma XX, Wei J, Pan Y, Guan W. The molar surface Gibbs energy and prediction of surface tension of [C n py][DCA] (n = 3, 4, 5). J Chem Thermodyn. 2016;95:21–5.

    Article  CAS  Google Scholar 

  20. Wei J, Zhang QB, Tian F, Zheng L, Guan W, Yang JZ. Study on the thermodynamic properties for ionic liquid [C6mim][OAc](1-hexyl-3-methylimidazolium acetate). Fluid Phase Equilib. 2014;371:1–5.

    Article  CAS  Google Scholar 

  21. Tong B, Liu QS, Tan ZC, Welz-Biermann U. Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculations. J Phys Chem A. 2010;114:3782–7.

    Article  CAS  Google Scholar 

  22. Speight JG. Lange’s handbook of chemistry. 16th ed. New York: McGraw-Hill; 2005.

    Google Scholar 

  23. Liu QS, Yang M, Yan PF, Liu XM, Tan ZC, Welz-Biermann U. Density and surface tension of ionic liquids [C n py][NTf2] (n = 2, 4, 5). J Chem Eng Data. 2010;55:4928–30.

    Article  CAS  Google Scholar 

  24. Paulechka YU, Kabo AG, Blokhin AV, Kabo GJ, Shevelyova MP. Heat capacity of ionic liquids: experimental determination and correlations with molar volume. J Chem Eng Data. 2010;55:2719–24.

    Article  CAS  Google Scholar 

  25. Barati-Harooni A, Najafi-Marghmaleki A, Arabloo M, Mohammadi AH. Chemical structural models for prediction of heat capacities of ionic liquids. J Mol Liq. 2017;232:113–22.

    Article  CAS  Google Scholar 

  26. Farahani N, Gharagheizi F, Mirkhani SA, Tumba K. A simple correlation for prediction of heat capacities of ionic liquids. Fluid Phase Equilib. 2013;337:73–82.

    Article  CAS  Google Scholar 

  27. Ahmadi A, Haghbakhsh R, Raeissi S, Hemmati V. A simple group contribution correlation for the prediction of ionic liquid heat capacities at different temperatures. Fluid Phase Equilib. 2015;403:95–103.

    Article  CAS  Google Scholar 

  28. Benito J, Garcı´a-Mardones M, Pe´rez-Gregorio V, Gasco´n I, Lafuente C. Physicochemical study of n-ethylpyridinium bis(trifluoromethylsulfonyl)imide Ionic Liquid. J Solut Chem. 2014;43:696–710.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (21373005, 21673107) and LNET (LR2015025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Guan or Da-Wei Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Li, L., Guo, YF. et al. The isobaric heat capacities and thermodynamic properties of ionic liquid 1-ethylpyridinium bis(trifluoromethylsulfonyl)imide. J Therm Anal Calorim 131, 2943–2949 (2018). https://doi.org/10.1007/s10973-017-6807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6807-1

Keywords

Navigation