Skip to main content

Advertisement

Log in

Thermal Properties of Alkyl-triethylammonium bis\(\{\)(trifluoromethyl)sulfonyl\(\}\)imide Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, we address the thermal properties of selected members of a homologous series of alkyltriethylammonium bis\(\{\)(trifluoromethyl)sulfonyl\(\}\)imide ionic liquids. Their phase and glass transition behavior, as well as their standard isobaric heat capacities at 298.15 K, were studied using differential scanning calorimetry (DSC), whereas their decomposition temperature was determined by thermal gravimetry analysis. DSC was further used to measure standard molar heat capacities of the studied ionic liquids and standard molar heat capacity as a function of temperature for hexyltriethylammonium, octyltriethylammonium, and dodecyltriethylammonium bis\(\{\)(trifluoromethyl)sulfonyl\(\}\)-imide ionic liquids. Based on the data obtained, we discuss the influence of the alkyl chain length of the cation on the studied ionic liquids on the measured properties. Using viscosity data obtained in a previous work, the liquid fragility of the ionic liquids is then discussed. Viscosity data were correlated by the VTF equation using a robust regression along a gnostic influence function. In this way, more reliable VTF model parameters were obtained than in our previous work and a good estimate of the liquid fragility of the ionic liquids was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wasserscheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis, 2nd edn. Wiley-VCH Verlag GmbH KGaA, Weinheim (2007)

    Google Scholar 

  2. Floris, T., Kluson, P., Bartek, L., Pelantova, H.: Quaternary ammonium salts ionic liquids for immobilization of chiral Ru-binap complexes in asymmetric hydrogenation of \(\beta \)-ketoesters. Appl. Catal. A Gen. 366, 160–165 (2009)

    Article  CAS  Google Scholar 

  3. Wishart, J.: Energy applications of ionic liquids. Energy Environ. Sci. 2, 956–961 (2009)

    Article  CAS  Google Scholar 

  4. Valkenburg, M., Vaughn, R., Williams, M., Wilkes, J.: Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 425, 181–188 (2005)

    Article  Google Scholar 

  5. Holbrey, J., Reichert, M., Reddy, R., Rogers, R.: Ionic Liquids as Green Solvents, vol. 856. American Chemical Society, Washington, DC (2003)

    Google Scholar 

  6. Kirchner, B. (ed.): Ionic Liquids, vol. 290. Springer, Berlin (2010)

    Google Scholar 

  7. Rebelo, L., Lopes, J., Esperança, J., Guedes, H., Łachwa, J., Najdanovic-Visak, V., Visak, Z.: Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic and modeling standpoint. Acc. Chem. Res. 40, 1114–1121 (2007)

    Article  CAS  Google Scholar 

  8. Castner, E., Wishart, J., Shirota, H.: Intermolecular dynamics, interactions, and solvation in ionic liquids. Acc. Chem. Res. 40, 1217–1227 (2007)

    Article  CAS  Google Scholar 

  9. Rocha, M., Lima, C., Gomes, L., Schröder, B., Coutinho, J., Marrucho, I., Esperanca, J., Rebelo, L., Shimizu, K., Lopes, J., Santos, L.: High-accuracy vapor pressure data of the extended \([\text{C}_n\text{C}_1{{\rm im}}][\text{Ntf}_2]\) ionic liquid series: Trend changes and structural shifts. J. Phys. Chem. B 115, 10919–10926 (2011)

    Article  CAS  Google Scholar 

  10. Rocha, M., Bastos, M., Coutinho, J., Santos, L.: Heat capacities at 298.15 K of the extended \([\text{C}_n\text{C}_{1}\text{im}][\text{Ntf}_2]\)ionic liquid series. J. Chem. Thermodyn. 53, 140–143 (2012)

    Article  CAS  Google Scholar 

  11. Paulechka, Y.: Heat capacity of room-temperature ionic liquids: a critical review. J. Phys. Chem. Ref. Data 39, 033108 (2010)

    Article  Google Scholar 

  12. Angell, C.A.: Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 102, 2627–2650 (2002)

    Article  CAS  Google Scholar 

  13. Angell, C.A.: Perspective on the glass transition. J. Phys. Chem. Solids 49, 863–871 (1988)

    Article  CAS  Google Scholar 

  14. Brüning, R., Sutton, M.: Fragility of glass-forming systems and the width of the glass transition. J. Non Cryst. Solids 205–207, 480–484 (1996)

    Article  Google Scholar 

  15. Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995)

    Article  CAS  Google Scholar 

  16. Xu, W., Cooper, E., Angell, A.: Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 107, 6170–6178 (2003)

    Article  CAS  Google Scholar 

  17. Zábranský, M., Kolská, Z., Růžička, V., Domalski, E.S.: Heat capacity of liquids: critical review and recommended values. Supplement II. J. Phys. Chem. Ref. Data 39, 013103-1–013103-404 (2010)

    Article  Google Scholar 

  18. Wagner, Z., Andresová, A., Bendová, M., Machanová, K., Rotrekl, J.: Mathematical gnostics, a powerful method of evaluating experimental heat capacity data. Book of Full Papers, 10th Conference on Distillation & Absorption 2014, pp. 28–33 (2014)

  19. Troncoso, J., Cerdeiriña, C.A., Sanmamed, Y.A., Romaní, L., Rebelo, L.P.N.: Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][\(\text{PF}_6\)] and [bmim][\(\text{NTf}_2\)]. J. Chem. Eng. Data 51, 1856–1859 (2006)

    Article  CAS  Google Scholar 

  20. Góralski, P., Tkaczyk, M., Chorążewski, M.: Heat capacities of \(\alpha,\omega \)-dichloroalkanes at temperatures from 284.15 to 353.15 K and a group additivity analysis. J. Chem. Eng. Data 48, 492–496 (2003)

    Article  Google Scholar 

  21. Páramo, R., Zouine, M., Sobrón, F., Casanova, C.: Saturated heat capacities of some linear and branched alkyl-benzenes between 288 and 348 K. Int. J. Thermophys. 24, 185–199 (2003)

    Article  Google Scholar 

  22. Ballerat-Busserolles, K., Rassinoux, S., Roux-Desgranges, G., Roux, A.H.: Thermal analysis of aqueous micellar solutions. J. Therm. Anal. Calorim. 51, 161–171 (1998)

    Article  CAS  Google Scholar 

  23. Chase Jr, M.W.: NIST-JANAF thermochemical tables, fourth edition. J. Phys. Chem. Ref. Data Monographs 9, 1–1951 (1998)

    Google Scholar 

  24. Shirota, H., Mandai, T., Fukazawa, H., Kato, T.: Comparison between dicationic and monocationic ionic liquids: liquid density, thermal properties, surface tension, and shear viscosity. J. Chem. Eng. Data 56, 2453–2459 (2011)

    Article  CAS  Google Scholar 

  25. Verdía, P., Hernaiz, M., González, E.J., Macedo, E.A., Salgado, J., Tojo, E.: Effect of the number, position and length of alkyl chains on the physical properties of polysubstituted pyridinium ionic liquids. J. Chem. Thermodyn. 69, 19–26 (2014)

    Article  Google Scholar 

  26. Tsunashima, K., Sugiya, M.: Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun. 9, 2353–2358 (2007)

    Article  CAS  Google Scholar 

  27. Machanová, K., Boisset, A., Sedláková, Z., Anouti, M., Bendová, M., Jacquemin, J.: Thermophysical properties of ammonium-based bis(trifluoromethyl)sulfonylimide ionic liquids: volumetric and transport properties. J. Chem. Eng. Data 57, 2227–2235 (2012)

    Article  Google Scholar 

  28. Calvar, N., Gómez, E., Macedo, E., Domínguez, Á.: Thermal analysis and heat capacities of pyridinium and imidazolium ionic liquids. Thermochim. Acta 565, 178–182 (2013)

    Article  CAS  Google Scholar 

  29. Golding, J., Forsyth, S., MacFarlane, D.R., Forsyth, M., Deacon, G.B.: Methanesulfonate and p-toluenesulfonate salts of the N-methyl-N-alkylpyrrolidinium and quaternary ammonium cations: novel low cost ionic liquids. Green Chem. 4, 223–229 (2002)

    Article  CAS  Google Scholar 

  30. MacFarlane, D.R., Meakin, P., Sun, J., Amini, N., Forsyth, M.: Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B 103, 4164–4170 (1999)

    Article  CAS  Google Scholar 

  31. Funston, A., Fadeeva, T., Wishart, J., Castner, E.: Fluorescence probing of temperature-dependent dynamics and friction in ionic liquid local environments. J. Phys. Chem. B 111, 4963–4977 (2007)

    Article  CAS  Google Scholar 

  32. Timmermans, J.: Plastic crystals: a historical review. J. Phys. Chem. Solids 18, 1–8 (1961)

    Article  CAS  Google Scholar 

  33. Forsyth, S., Golding, J., MacFarlane, D.R., Forsyth, M.: N-methyl-N-alkylpyrrolidinium tetrafluoroborate salts: ionic solvents and solid electrolytes. Electrochim. Acta 46, 1753–1757 (2001)

    Article  CAS  Google Scholar 

  34. Yamamuro, O., Minamimoto, Y., Inamura, Y., Hayashi, S., Hamaguchi, H.O.: Heat capacity and glass transition of an ionic liquid 1-butyl-3-methylimidazolium chloride. Chem. Phys. Lett. 423, 371–375 (2006)

    Article  CAS  Google Scholar 

  35. Herstedt, M., Smirnov, M., Johansson, P., Chami, M., Grondin, J., Servant, L., Lassègues, J.C.: Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI). J. Raman Spectrosc. 36, 762–770 (2005)

    Article  CAS  Google Scholar 

  36. Sun, J., Forsyth, M., Macfarlane, D.R.: Room-temperature molten salts based on the quaternary ammonium ion. J. Phys. Chem. B 102, 8858–8864 (1998)

    Article  CAS  Google Scholar 

  37. Fredlake, C., Crosthwaite, J., Hert, D., Aki, S., Brennecke, J.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 49, 954–964 (2004)

    Article  CAS  Google Scholar 

  38. Ngo, H., LeCompte, K., Hargens, L., McEwen, A.: Thermal properties of imidazolium ionic liquids. Thermochim. Acta 357–358, 97–102 (2000)

    Article  Google Scholar 

  39. MacFarlane, D.R., Sun, J., Golding, J., Meakin, P., Forsyth, M.: High conductivity molten salts based on the imide ion. Electrochim. Acta 45, 1271–1278 (2000)

    Article  Google Scholar 

  40. Glasser, L.: Lattice and phase transition thermodynamics of ionic liquids. Thermochim. Acta 421, 87–93 (2004)

    Article  CAS  Google Scholar 

  41. Diogo, H.P., Moura Ramos, J.J.: Are crystallization and melting the reverse transformation of each other? J. Chem. Educ. 83, 1389–1392 (2006)

    Article  CAS  Google Scholar 

  42. Anouti, M., Caillon-Caravanier, M., Le Floch, C., Lemordant, D.: Alkylammonium-based protic ionic liquids. II. Ionic transport and heat-transfer properties: fragility and ionicity rule. J. Phys. Chem. B. 112, 9412–9416 (2008)

    Article  CAS  Google Scholar 

  43. Bhatt, V., Gohil, K.: Ion exchange synthesis and thermal characteristics of some \([\text{N}_4444]^{+}\) based ionic liquids. Thermochim. Acta 556, 23–29 (2013)

    Article  CAS  Google Scholar 

  44. Ge, R., Hardacre, C., Jacquemin, J., Nancarrow, P., Rooney, D.: Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. Measurement and prediction. J. Chem. Eng. Data 53, 2148–2153 (2008)

    Article  CAS  Google Scholar 

  45. Joback, K.: A unified approach to physical property estimation using multivariant statistical techniques. Master’s Thesis, Massachusetts Institute of Technology (1984)

  46. Polling, B., Prausnitz, J.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  47. Valderrama, J.O., Robles, P.A.: Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. Ind. Eng. Chem. Res. 46, 1338–1344 (2007)

    Article  CAS  Google Scholar 

  48. Valderrama, J.O., Sanga, W.W., Lazzus, J.A.: Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids. Ind. Eng. Chem. Res. 47, 1318–1330 (2008)

    Article  CAS  Google Scholar 

  49. Valderrama, J., Rojas, R.: Critical properties of ionic liquids. Revisited. Ind. Eng. Chem. Res. 48, 6890–6900 (2009)

    Article  CAS  Google Scholar 

  50. Seddon, K.R., Stark, A., Torres, M.J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)

    Article  CAS  Google Scholar 

  51. Avramov, I.: Viscosity in disordered media. J. Non Crystal. Solids 351, 3163–3173 (2005)

    Article  CAS  Google Scholar 

  52. Ojovan, M., Travis, K., Hand, R.: Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships. J. Phys. Condens. Matt. 19, 415107 (2007)

    Article  Google Scholar 

  53. Angell, C.A., Ansari, Y., Zhao, Z.: Ionic liquids: past, present and future. Faraday Discuss. 154, 9–27 (2012)

    Article  Google Scholar 

  54. Böhmer, R., Ngai, K.L., Angell, C.A., Plazek, D.J.: Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993)

    Article  Google Scholar 

  55. Andresová, A., Storch, J., Traïkia, M., Bendová, M., Husson, P.: Branched and cyclic alkyl groups in imidazolium-based ionic liquids: molecular organization and physico-chemical properties. Fluid Phase Equilib. 371, 41–49 (2014)

    Article  Google Scholar 

  56. Heiberger, R.M., Becker, R.A.: Design of an S function for robust regression using iteratively reweighted least squares. J. Comput. Graph. Stat. 3, 181–196 (1992)

    Google Scholar 

  57. Kovanic, P., Humber, M.B.: The Economics of Information-Mathematical Gnostics for Data Analysis, book 719 pp [online]; edn. Available only at http://www.math-gnostics.com/index.php?a=books (2009)

  58. Kovanic, P.: A new theoretical and algorithmical basis for estimation, identification and control. Automatica 22, 657–674 (1986)

    Article  Google Scholar 

  59. Krivý, I., Tvrdík, J.: The controlled random search algorithm in optimizing regression models. Comput. Stat. Data Anal. 20, 229–234 (1995)

    Article  Google Scholar 

  60. Krivý, I., Tvrdík, J.: Simple evolutionary heuristics for global optimization. Comput. Stat. Data Anal. 30, 345–352 (1999)

    Google Scholar 

  61. Krivý, I., Tvrdík, J., Misík, L.: Evolutionary algorithm with competing heuristics. Proc. Mendel 2001, 58–64 (2001)

    Google Scholar 

Download references

Acknowledgments

Magdalena Bendová thanks the Ministry of Education, Youth, and Sports of the Czech Republic for financing this project under Grants No. MEB021009 and LG12032 and Johan Jacquemin thanks the Egide PHC Barrande Reasearch Program for financing this project under Grant No. 22000XB. The authors further thank Tomáš Floriš of the Department of Organic Technology, ICT Prague for kindly providing the ionic liquids used in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johan Jacquemin or Magdalena Bendová.

Additional information

Dedicated to the memory of Prof. Eduard Hála (1919–1989).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (tex 4 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machanová, K., Wagner, Z., Andresová, A. et al. Thermal Properties of Alkyl-triethylammonium bis\(\{\)(trifluoromethyl)sulfonyl\(\}\)imide Ionic Liquids. J Solution Chem 44, 790–810 (2015). https://doi.org/10.1007/s10953-015-0323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0323-3

Keywords

Navigation