Skip to main content
Log in

Examination the Grain Size Dependence of Exchange Coupling in Oxide-Based SrFe12O19/Ni0.7Zn0.3Fe2O4 Nanocomposites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetic hard/soft SrFe12O19/Ni0.7Zn0.3Fe2O4 nanocomposites were fabricated by a two-step chemical procedure. Strontium hexaferrite NPs were synthesized via sol–gel self-propagation and then dispersed in nickel–zinc ferrite sol to prepare oxide nanocomposites by the glyoxilate precursor method. The initial product was annealed at different temperatures to study the effect of grain size on the magnetic properties of composite hard/soft ferrites. The magnetic nanoparticles (MNPs) were characterized by XRD, FTIR, TEM, and VSM techniques. Magnetic measurements indicated concave hysteresis loops for these two-phase nanocomposites due to non-complete exchange coupling at the interfaces of hard and soft ferrites. This phenomenon could be attributed to the overcritical size, 46 nm, of the hard phase, based on the critical limit of 22 nm predicted by theoretical calculation. At high annealing temperature with increasing the size of the soft phase as well as the hard phase, the dipolar interaction became dominant and the magnetic behavior of hard/soft nanocomposites approached two-phase uncoupled magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cui, B.Z., Han, K., Garmestani, H., Su, J.H., Schneider-Muntau, H.J., Liu, J.P.: Enhancement of exchange coupling and hard magnetic properties in nanocomposites by magnetic annealing. Acta Mater. 53, 4155–4161 (2005)

    Article  Google Scholar 

  2. Kazantseva, N.E., Bespyatykh, Yu.I., Sapurina, I., Stejskal, J., Vilcakova, J., Saha, P.: Magnetic materials based on manganese–zinc ferrite with surface-organized polyaniline coating. J. Magn. Magn. Mater. 301, 155–165 (2006)

    Article  ADS  Google Scholar 

  3. Chen, D.H., Wang, S.R.: Protective agent-free synthesis of Ni–Ag core–shell nanoparticles. Mater. Chem. Phys. 100, 468–471 (2006)

    Article  Google Scholar 

  4. Wu, K.H., Ting, T.H., Liu, C.I., Yang, C.C., Hsu, J.S.: Electromagnetic and microwave absorbing properties of Ni0.5Zn0.5Fe2O4/bamboo charcoal core–shell nanocomposites. Compos. Sci. Technol. 68, 132–139 (2008)

    Article  Google Scholar 

  5. Chen, Z., Zhang, Y., Hadjipanayis, G.C.: Nanocomposite PrCo5/Pr2Co17 magnets with enhanced maximum energy product. J. Magn. Magn. Mater. 219, 178–182 (2000)

    Article  ADS  Google Scholar 

  6. Chen, Z., Zhang, Y., Hadjipanayis, G.C., Ma, B.: Exchange coupled R2(Fe, Co,Nb)14B/(Fe, Co) (R = Nd, Pr) and Sm2(Fe, Co,Cr)17C2/(Fe, Co) nanocomposite magnets. J. Alloys Compd. 287, 227–233 (1999)

    Article  Google Scholar 

  7. Choi, Y., Jiang, J.S., Ding, Y., Rosenberg, R.A., Pearson, J.E., Bader, S.D., Zambano, A., Murakami, M., Takeuchi, I., Wang, Z.L., Liu, J.P.: Role of diffused Co atoms in improving effective exchange coupling in Sm-Co/Fe spring magnets. Phys. Rev. B, Condens. Matter 75, 104432 (2007). 6pp.

    Article  ADS  Google Scholar 

  8. Jiang, J.S., Pearson, J.E., Liu, Z.Y., Kabius, B., Trasobares, S., Miller, D.J., Bader, S.D., Lee, D.R., Haskel, D., Srajer, G., Liu, J.P.: Magnetization reversal and nanostructure refinement in magnetically annealed Nd2Fe14B/a-Fe-type nanocomposites. J. Appl. Phys. 97, 10F308 (2005). 3pp.

    Article  Google Scholar 

  9. Sen, Y., Xiaoping, S., Youwei, D.: Exchange coupled Nd2Fe14B/α-Fe nanocomposite magnets with fine α-Fe grains. Microelectron. Eng. 66, 121–127 (2003)

    Article  Google Scholar 

  10. Choi, Y., Jiang, J.S., Pearson, J.E., Bader, S.D., Kavich, J.J., Freeland, J.W., Liu, J.P.: Controlled interface profile in Sm–Co/Fe exchange-spring magnets. Appl. Phys. Lett. 91, 072509 (2007). 3pp.

    Article  ADS  Google Scholar 

  11. Fischer, R., Schrefl, T., Kronmuller, H., Fidler, J.: Grain-size dependence of remanence and coercive field of isotropic nanocrystalline composite permanent magnets. J. Magn. Magn. Mater. 153, 35–49 (1996)

    Article  ADS  Google Scholar 

  12. Zambano, A.J., Oguchi, H., Takeuchi, I., Choi, Y., Jiang, J.S., Liu, J.P., Lofland, S.E., Josell, D., Bendersky, L.A.: Dependence of exchange–coupling interaction on micromagnetic constants in hard/soft magnetic bilayer systems. Phys. Rev. B, Condens. Matter 75, 144429 (2007). 7pp.

    Article  ADS  Google Scholar 

  13. Choi, Y., Jiang, J.S., Pearson, J.E., Bader, S.D.: SmCo5/Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles. App. Phys. Lett. 91, 022509 (2007). 3pp

    Article  ADS  Google Scholar 

  14. Guo, L., Shen, X., Song, F., Liu, M., Zhu, Y.: Characterization and magnetic exchange observation for CoFe2O4–CoFe2 nanocomposite microfibers. J. Sol-Gel Sci. Technol. 58, 524–529 (2011)

    Article  Google Scholar 

  15. Chaubey, G.S., Nandwana, V., Poudyal, N., Rong, C., Liu, J.P.: Synthesis and characterization of bimagnetic bricklike nanoparticles. Chem. Mater. 20, 475–478 (2008)

    Article  Google Scholar 

  16. Masala, O., Hoffman, D., Sundaram, N., Page, K., Proffen, Th.: Preparation of magnetic spinel ferrite core/shell nanoparticles: soft ferrites on hard ferrites and vice versa. Solid State Sci. 8, 1015–1022 (2006)

    Article  ADS  Google Scholar 

  17. Zhang, L., Li, Z.: Synthesis and characterization of SrFe12O19/CoFe2O4 nanocomposites with core–shell structure. J. Alloys Compd. 469, 422–426 (2009)

    Article  Google Scholar 

  18. Zeng, H., Li, J., Wang, Z.L., Liu, J.P., Sun, S.: Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 4, 187–190 (2004)

    Article  ADS  Google Scholar 

  19. Hong, J.H., Kim, W.S., Lee, J.I., Hur, N.H.: Exchange coupled magnetic nanocomposites of Sm(Co1−x Fe x )5/Fe3O4 with core/shell structure. Solid State Commun. 141, 541–544 (2007)

    Article  ADS  Google Scholar 

  20. Rong, C.-b., Ping Liu, J.: Grain boundary contribution to recoil loop openness of exchange-coupled nanocrystalline magnets. Appl. Phys. Lett. 94, 172510 (2009). 3pp.

    Article  ADS  Google Scholar 

  21. Liu, X., Zhong, W., Gu, B., Du, Y.: Exchange–coupling interaction in nanocomposite SrFe12O19/-Fe2O3 permanent ferrites. J. Appl. Phys. 92, 1028–1032 (2002)

    Article  ADS  Google Scholar 

  22. Fei, C., Zhang, Y., Yang, Z., Liu, Y., Xiong, R., Shi, J., Ruan, X.: Synthesis and magnetic properties of hard magnetic (CoFe2O4)–soft magnetic (Fe3O4) nano-composite ceramics by SPS technology. J. Magn. Magn. Mater. 323, 1811–1816 (2011)

    Article  ADS  Google Scholar 

  23. Roy, D., Shivakumara, C., Anil Kumar, P.S.: On the magnetization reversal of the oxide-based exchange spring magnet. J. Appl. Phys. 109, 07A761 (2011). 3pp.

    Article  Google Scholar 

  24. Hazra, S., Patra, M.K., Vadera, S.R., Ghosh, N.N.: A novel but simple “one-pot” synthetic route for preparation of (NiFe2O4) x –(BaFe12O19)1−x composites. J. Am. Ceram. Soc. 95, 60–63 (2012)

    Article  Google Scholar 

  25. Caizer, C., Stefanescu, M.: Magnetic characterization of nanocrystalline Ni–Zn ferrite powder prepared by the glyoxilate precursor method. J. Phys. D, Appl. Phys. 35, 3035–3040 (2002)

    Article  ADS  Google Scholar 

  26. Roy, D., Shivakumara, C., Anil Kumar, P.S.: Observation of the exchange spring behavior in hard–soft-ferrite nanocomposite. J. Magn. Magn. Mater. 321, L11–L14 (2009)

    Article  ADS  Google Scholar 

  27. Kneller, E.F., Hawig, R.: The exchange-spring magnet: a new material principle for permanent magnet. IEEE Trans. Magn. 27, 3588–3600 (1991)

    Article  ADS  Google Scholar 

  28. Gao, R.W., Feng, W.C., Liu, H.Q., Wang, B., Chen, W., Han, G.B., Zhang, P., Li, H., Li, W., Guo, Y.Q., Pan, W., Li, X.M., Zhu, M.G., Li, X.: Exchange–coupling interaction, effective anisotropy and coercivity in nanocomposite permanent materials. J. Appl. Phys. 94, 664–668 (2003)

    Article  ADS  Google Scholar 

  29. Han, G.B., Gao, R.W., Fu, S., Feng, W.C., Liu, H.Q., Chen, W., Li, W., Guo, Y.Q.: Effective anisotropy between magnetically soft and hard grains in nanocomposite magnets. Appl. Phys. A, Mater. Sci. Process. 81, 579–582 (2005)

    Article  ADS  Google Scholar 

  30. Schrefl, T., Kronmuller, H., Fidler, J.: Exchange hardening in nano-structured two-phase permanent magnets. J. Magn. Magn. Mater. 127, L273–L277 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support of the University of Tehran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. A. Radmanesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radmanesh, S.M.A., Seyyed Ebrahimi, S.A. Examination the Grain Size Dependence of Exchange Coupling in Oxide-Based SrFe12O19/Ni0.7Zn0.3Fe2O4 Nanocomposites. J Supercond Nov Magn 26, 2411–2417 (2013). https://doi.org/10.1007/s10948-012-1819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1819-3

Keywords

Navigation