Skip to main content
Log in

Nanoindentation stress–strain curves as a method for thin-film complete mechanical characterization: application to nanometric CrN/Cr multilayer coatings

  • Regular Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mechanical behavior of CrN/Cr multilayer coatings deposited by rf magnetron sputtering has been investigated by nanoindentation measurements performed with indenters of different geometries. Nanoindentation stress–strain curves generated from these measurements allow us to characterize the complete mechanical behavior of these coatings in the elastic, elastoplastic, plastic and fracture deformation regimes. In particular, indentation measurements carried out with a 100-μm-radius spherical indenter allowed us to study the elastic deformation regime and estimate the yield stress parameter through the initial indentation yielding point. The elastoplastic deformation regime has been studied using a 5-μm-radius spherical indenter and the stationary yielding regime (fully plastic regime) has been investigated with a pyramidal indenter of Berkovich geometry. The use of a pyramidal cube-corner indenter allowed us to study coating fracture characteristics. Nanometric CrN/Cr multilayer structures as well as single CrN and Cr coatings have been characterized. The study has shown that multilayered coatings with period thicknesses less than 46 nm present values of yield stress, Young’s modulus, hardness and toughness higher than those for single-layer CrN and Cr coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ben Daia, P. Aubert, S. Labdi, C. Sant, F.A. Sadi, P. Houdy, J.L. Bozet: J. Appl. Phys. 87, 7753 (2000)

    Article  ADS  Google Scholar 

  2. J. Wang, W.Z. Li, H.D. Li, B. Shi, J.B. Luo: Surf. Coat. Technol. 128129, 161 (2000)

    Article  Google Scholar 

  3. M. Larsson, M. Bromark, P. Hendenqvist, S. Hogmark: Surf. Coat. Technol. 7677, 202 (1995)

    Article  Google Scholar 

  4. M. Berger, U. Wiklund, M. Eriksson, M. Engqvist, S. Jacobson: Surf. Coat. Technol. 119, 1138 (1999)

  5. M. Nordin, M. Larsson, S. Hogmark: Wear 232, 221 (1999)

    Google Scholar 

  6. Y.M. Zhou, R. Asaki, W.H. Soe, R. Yamamoto, R. Chen, A. Iwabuchi: Wear 236, 159 (1999)

    Google Scholar 

  7. P. Hones, R. Sanjines, F. Lévy: Surf. Coat. Technol. 9495, 398 (1997)

    Article  Google Scholar 

  8. W.C. Oliver, G.M. Pharr: J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  9. M.F. Doerner, W.D. Nix: J. Mater. Res. 1, 601 (1986)

    Article  ADS  Google Scholar 

  10. A.C. Fisher-Cripps: Introduction to Contact Mechanics (Springer-Verlag, New York 2000)

  11. D. Tabor: The Hardness of Metals (Clarendon Press, Oxford 1951)

  12. M.V. Swain, J.T. Hagan: J. Phys. D Appl. Phys. 9, 2201 (1976)

    Article  ADS  Google Scholar 

  13. A. Lousa, J. Romero, E. Martínez, J. Esteve, F. Montalà, L. Carreras: Surf. Coat. Technol. 146147, 268 (2001)

    Article  Google Scholar 

  14. NanoIndenter XP, Nano Instruments Inc, Technical data

  15. P. Hones, M. Diserens, R. Sanjines, F. Levy: J. Vac. Sci. Technol. B 18, 2851 (2000)

    Article  Google Scholar 

  16. R. Kurt, R. Sanjines, A. Karimi, F. Levy: Diamond Relat. Mat. 9, 566 (2000)

  17. X. Li, B. Bhushan: Thin Solid Films 315, 214 (1998)

  18. M.K. Kazmanli, B. Rother, M. Ürgen, C. Mitterer: Surf. Coat. Technol. 107, 65 (1998)

    Article  Google Scholar 

  19. K.K. Shih, D.B. Dove: Appl. Phys. Lett. 61, 654 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Martínez.

Additional information

PACS

62.20.Dc; 62.20.Qp; 68.60.Bs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, E., Romero, J., Lousa, A. et al. Nanoindentation stress–strain curves as a method for thin-film complete mechanical characterization: application to nanometric CrN/Cr multilayer coatings. Appl Phys A 77, 419–426 (2003). https://doi.org/10.1007/s00339-002-1669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-002-1669-0

Keywords

Navigation