Skip to main content
Log in

Laser-Excited Frequency-Switchable and Polarization-Controlled Amplitude-Tunable Terahertz Metamaterial Absorber

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We achieve a frequency-switchable and amplitude-tunable terahertz metamaterial absorber (MMA) by means of introducing two different controlling degrees of freedom. Frequency-switchable function is controlled by external laser excitation, and amplitude-tunable function is controlled by the incident polarization angle. Two discrete resonance peaks can be detected, and the causes are investigated. With and without laser excitation, the absorption peak in the low-frequency band can dynamically switch between 1.285 and 1.295 THz and, in the high-frequency band, the one can dynamically switch between 2.845 and 2.42 THz. Meanwhile, the absorber is polarization sensitive for its symmetry structure. By rotating the device clockwise, an amplitude modulation depth of 13% can be obtained for the resonance absorption peak in the low-frequency band, and it is up to 100% for the one in the high-frequency band. Therefore, the amplitude dynamic modulation is realized at the same time as frequency switching, which provides a new approach for future terahertz devices possessing the characteristics of multifunction, portability, and intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Grebenchukov, M. Masyukov, and A. Zaitsev, Opt. Commun., 476, 126299 (2020).

  2. Y. Zhang and Y. Li, Mater. Lett., 170, 114 (2016).

    Article  Google Scholar 

  3. S. Daniel, and P. Bawuzh, Photonic Sens., 10, 233 (2019).

    Article  ADS  Google Scholar 

  4. L. J. Geng, Z. F. Zhang, Y. S. Zhai, et al., J. Russ. Laser Res., 38, 392 (2017).

    Article  Google Scholar 

  5. H. Yokota, K. Onuki, and Y. Imai, Opt. Commun., 480, 126465 (2020).

  6. J. Jeong, D. Kim, M. Seo, et al., Nano Lett., 19, 9062 (2019).

    Article  ADS  Google Scholar 

  7. S. D. Jenkins, N. Papasimakis, S. Savo, et al., Phys. Rev. B, 98, 245136 (2018).

  8. H. Tabata, Terahertz Sci. Technol., 5, 1146 (2015).

  9. H. Takeda, H. Yoshioka, H. Minamide, et al., Opt. Commun., 476, 126339 (2020).

  10. T. L. Zinenko, J. Opt., 17, 055604 (2015).

  11. S. Quader, M. R. Akram, F. J. Xiao, et al., J. Opt., 22, 095104 (2020).

  12. K. N. Ovchinnikov and S. A. Uryupin, J. Russ. Laser Res., 40, 467 (2019).

    Article  Google Scholar 

  13. T. Suzuki, M. Sekiya, T. Sato, et al., Opt. Express, 26, 8314 (2018).

    Article  ADS  Google Scholar 

  14. A. Fardoost, F. G. Vanani, A. Amirhosseini, et al., IEEE Trans. Nanotechnol., 16, 68 (2017).

    Google Scholar 

  15. S. Asgari, N. Sharifi, and N. Granpayeh, J. Micromech. Microeng., 29, 045010 (2019).

  16. P. Pitchappa, C. P. Ho, L. Q. Cong, et al., Adv. Opt. Mater., 4, 391 (2016).

    Article  Google Scholar 

  17. R. Kowerdziej, M. Olifierczuk, J. Parka, et al., Appl. Phys. Lett., 105, 022908 (2014).

  18. M. Zhu, J. Chen, J. Li, et al., J. Phys. D: Appl. Phys., 52, 085104 (2019).

  19. M. A. Cole, D. A. Powell, and I. V. Shadrivov, Nanotechnology, 27, 424003 (2016).

  20. R. Mishra, R. Panwar, and D. Singh, IEEE Magn. Lett., 9, 3707025 (2018).

    Google Scholar 

  21. P. W. C. Hon, Z. J. Liu, T. Itoh, et al., J. Appl. Phys., 113, 033105 (2013).

  22. A. A. Tavallaee, B. S. Williams, P. W. C. Hon, et al., Appl. Phys. Lett., 99, 141115 (2011).

  23. S. Poorgholam-Khanjari, F. B. Zarrabi, and S. Jarchi, Optik, 203, 163990 (2020).

  24. I. Al-naib, G. Sharma, M. M. Dignam, et al., Phys. Rev. B, 88, 195203 (2013).

  25. J. H. Shin, K. H. Park, and H. C. Ryu, Nanotechnology, 27, 195202 (2016).

  26. R. Kowerdziej, M. Olifierczuk, J. Parka, et al., Appl. Phys. Lett., 105, 022908 (2014).

  27. J. L. Pan, H. W. Hu, Z. C. Li, et al., Nanoscale Adv., 3, 1515 (2021).

    Article  ADS  Google Scholar 

  28. I. S. Lee, I. B. Sohn, C. Kang, et al., Appl. Phys. Lett., 109, 031103 (2016).

  29. B. Gerislioglu, A. Ahmadivand, and N. Pala, Opt. Express, 97, 161405 (2018).

  30. M. A. Baqir and S. A. Naqvi, Plasmonics, 15, 2205 (2020).

    Article  Google Scholar 

  31. Y. Zhang, Y. J. Feng, and J. M. Zhao, Carbon, 163, 244 (2020).

    Article  Google Scholar 

  32. Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, Opt. Mater., 62, 28 (2016).

    Article  ADS  Google Scholar 

  33. Y. Q. Tong, S. Y. Wang, X. X. Song, et al., J. Infrared Millim. Waves, 39, 735 (2020).

    Google Scholar 

  34. Q. L. Meng, Y. Zhang, Z. Q. Zhong, et al., J. Mod. Opt., 65, 2086 (2018).

    Article  ADS  Google Scholar 

  35. J. J. Liu and L. L. Fan, Micro. Opt. Technol. Lett., 62, 1681 (2020).

    Article  Google Scholar 

  36. R. M. Gao, Z. C. Xu, C. F. Ding, et al., Appl. Opt., 55, 1929 (2016).

    Article  ADS  Google Scholar 

  37. Z. J. Cui, D. Y. Zhu, L. S. Yue, et al., Opt. Express, 27, 22190 (2019).

    Article  ADS  Google Scholar 

  38. J. Peng, J. Leng, D. Cao, et al., Appl. Opt., 60, 6520 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, X. Laser-Excited Frequency-Switchable and Polarization-Controlled Amplitude-Tunable Terahertz Metamaterial Absorber. J Russ Laser Res 43, 346–353 (2022). https://doi.org/10.1007/s10946-022-10058-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10058-x

Keywords

Navigation