Skip to main content
Log in

Semiconductor activated terahertz metamaterials

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result in unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and fewlayer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veselago V G. The electrodynamics of substances with simultaneously negative values of ɛ and µ. Soviet Physics Uspekhi-USSR, 1968, 10(4): 509–514

    Google Scholar 

  2. Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084

    Google Scholar 

  3. Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776

    Google Scholar 

  4. Wu D M, Fang N, Sun C, Zhang X, Padilla WJ, Basov D N, Smith D R, Schultz S. Terahertz plasmonic high pass filter. Applied Physics Letters, 2003, 83(1): 201–203

    Google Scholar 

  5. Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187

    Google Scholar 

  6. Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79

    Google Scholar 

  7. Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969

    Google Scholar 

  8. Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537

    Google Scholar 

  9. Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782

    MATH  MathSciNet  Google Scholar 

  10. Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780

    MATH  MathSciNet  Google Scholar 

  11. Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980

    Google Scholar 

  12. Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X. Terahertz magnetic response from artificial materials. Science, 2004, 303(5663): 1494–1496

    Google Scholar 

  13. Moser H O, Casse B D F, Wilhelmi O, Saw B T. Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. Physical Review Letters, 2005, 94(6): 063901

    Google Scholar 

  14. Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M. Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700): 1351–1353

    Google Scholar 

  15. Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P, Kildishev A V. Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30(24): 3356–3358

    Google Scholar 

  16. Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J. Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005, 95(13): 137404

    Google Scholar 

  17. Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901

    Google Scholar 

  18. Chen H T, O’Hara J F, Azad A K, Taylor A J. Manipulation of terahertz radiation using metamaterials. Laser & Photonics Reviews, 2011, 5(4): 513–533

    Google Scholar 

  19. Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M. Broadband terahertz generation from metamaterials. Nature Communications, 2014, 5: 3055

    Google Scholar 

  20. Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33

    Google Scholar 

  21. Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105

    Google Scholar 

  22. Azad A K, Dai J, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Optics Letters, 2006, 31(5): 634–636

    Google Scholar 

  23. Chen H T, O’Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Complementary planar terahertz metamaterials. Optics Express, 2007, 15(3): 1084–1095

    Google Scholar 

  24. Singh R, Smirnova E, Taylor A J, O’Hara J F, Zhang W. Optically thin terahertz metamaterials. Optics Express, 2008, 16(9): 6537–6543

    Google Scholar 

  25. Chiam S Y, Singh R, Gu J Q, Han J G, Zhang W L, Bettiol A A. Increased frequency shifts in high aspect ratio terahertz split ring resonators. Applied Physics Letters, 2009, 94(6): 064102

    Google Scholar 

  26. Chiam S Y, Singh R, Zhang W L, Bettiol A A. Controlling metamaterial resonances via dielectric and aspect ratio effects. Applied Physics Letters, 2010, 97(19): 191906

    Google Scholar 

  27. O’Hara J F, Singh R, Brener I, Smirnova, Han J, TaylorA J, Zhang W. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008, 16(3): 1786–1795

    Google Scholar 

  28. Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R. Tuned permeability in terahertz split-ring resonators for devices and sensors. Applied Physics Letters, 2007, 91(6): 062511

    Google Scholar 

  29. Chen H T, Yang H, Singh R, O’Hara J F, Azad A K, Trugman S A, Jia Q X, Taylor A J. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Physical Review Letters, 2010, 105(24): 247402

    Google Scholar 

  30. Katsarakis N, Konstantinidis G, Kostopoulos A, Penciu R S, Gundogdu T F, Kafesaki M, Economou E N, Koschny T, Soukoulis C M. Magnetic response of split-ring resonators in the far-infrared frequency regime. Optics Letters, 2005, 30(11): 1348–1350

    Google Scholar 

  31. Quan B G, Xu X L, Yang H F, Xia X X, Wang Q, Wang L, Gu C Z, Li C, Li F. Time-resolved broadband analysis of split ring resonators in terahertz region. Applied Physics Letters, 2006, 89(4): 041101

    Google Scholar 

  32. Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Kuhl J, Giessen H. On the reinterpretation of resonances in split-ring-resonators at normal incidence. Optics Express, 2006, 14(19): 8827–8836

    Google Scholar 

  33. Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Physical Review Letters, 2006, 96(10): 107401

    Google Scholar 

  34. Driscoll T, Andreev G O, Basov D N, Palit S, Ren T, Mock J, Cho S Y, Jokerst N M, Smith D R. Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy. Applied Physics Letters, 2007, 90(9): 092508

    Google Scholar 

  35. Padilla W J, Aronsson M T, Highstrete C, Lee M, Taylor A J, Averitt R D. Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Physical Review B, 2007, 75(4): 041102

    Google Scholar 

  36. Padilla W J. Group theoretical description of artificial electromagnetic metamaterials. Optics Express, 2007, 15(4): 1639–1646

    MathSciNet  Google Scholar 

  37. O’Hara J F, Smirnova E, Azad A K, Chen H-T, Taylor A J. Effects of microstructure variations on macroscopic terahertz metafilm properties. Active and Passive Electronic Components, 2007, 2007: 49691

    Google Scholar 

  38. O’Hara J F, Smirnova E, Chen H T, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Properties of planar electric metamaterials for novel terahertz applications. Journal of Nanoelectronics and Optoelectronics, 2007, 2(1): 90–95

    Google Scholar 

  39. Azad A K, Taylor A J, Smirnova E, O’Hara J F. Characterization and analysis of terahertz metamaterials based on rectangular splitring resonators. Applied Physics Letters, 2008, 92(1): 011119

    Google Scholar 

  40. Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N, Zheludev N I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Physical Review Letters, 2007, 99(14): 147401

    Google Scholar 

  41. Singh R, Al-Naib I A I, Koch M, Zhang W. Sharp Fano resonances in THz metamaterials. Optics Express, 2011, 19(7): 6312–6319

    Google Scholar 

  42. Munk B A. Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons, 2000

    Google Scholar 

  43. Smith D R, Vier D C, Koschny T, Soukoulis CM. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71(3): 036617

    Google Scholar 

  44. Holloway C L, Kuester E F, Gordon J A, O’Hara J, Booth J, Smith D R. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35

    Google Scholar 

  45. Chen H T. Interference theory of metamaterial perfect absorbers. Optics Express, 2012, 20(7): 7165–7172

    Google Scholar 

  46. Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402

    Google Scholar 

  47. Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 2008, 16(10): 7181–7188

    Google Scholar 

  48. Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla WJ. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 2009, 79(12): 125104

    Google Scholar 

  49. Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Physical Review B, 2008, 78(24): 241103

    Google Scholar 

  50. Diem M, Koschny T, Soukoulis CM.Wide-angle perfect absorber/thermal emitter in the terahertz regime. Physical Review B, 2009, 79(3): 033101

    Google Scholar 

  51. Shchegolkov D Y, Azad A K, O’Hara J F, Simakov E I. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Physical Review B, 2010, 82(20): 205117

    Google Scholar 

  52. Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Applied Physics Letters, 2009, 95(24): 241111

    Google Scholar 

  53. Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. Journal of the Optical Society of America. B, 2010, 27(3): 498–504

    Google Scholar 

  54. Tao H, Bingham C M, Pilon D, Fan K B, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D. A dual band terahertz metamaterial absorber. Journal of Physics. D, 2010, 43(22): 225102

    Google Scholar 

  55. Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J. Tripleband terahertz metamaterial absorber: design, experiment, and physical interpretation. Applied Physics Letters, 2012, 101(15): 154102

    Google Scholar 

  56. Huang L, Chowdhury D R, Ramani S, Reiten MT, Luo S N, Taylor A J, Chen H T. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Optics Letters, 2012, 37(2): 154–156

    Google Scholar 

  57. Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Azad A K, Taylor A J, Chen H T. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Applied Physics Letters, 2012, 101(10): 101102

    Google Scholar 

  58. Wen Q Y, Xie Y S, Zhang H W, Yang Q H, Li Y X, Liu Y L. Transmission line model and fields analysis of metamaterial absorber in the terahertz band. Optics Express, 2009, 17(22): 20256–20265

    Google Scholar 

  59. Chen H T, Zhou J, O’Hara J F, Chen F, Azad A K, Taylor A J. Antireflection coating using metamaterials and identification of its mechanism. Physical Review Letters, 2010, 105(7): 073901

    Google Scholar 

  60. Chen H T, Zhou J F, O’Hara J F, Taylor A J. A numerical investigation of metamaterial antireflection coatings. Terahertz Science and Technology, 2010, 3(2): 66–73

    Google Scholar 

  61. Strikwerda A C, Fan K, Tao H, Pilon D V, Zhang X, Averitt R D. Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies. Optics Express, 2009, 17(1): 136–149

    Google Scholar 

  62. Peralta X G, Smirnova E I, Azad A K, Chen H T, Taylor A J, Brener I, O’Hara J F. Metamaterials for THz polarimetric devices. Optics Express, 2009, 17(2): 773–783

    Google Scholar 

  63. Cong L Q, Cao W, Tian Z, Gu J Q, Han J G, Zhang W L. Manipulating polarization states of terahertz radiation using metamaterials. New Journal of Physics, 2012, 14(11): 115013

    Google Scholar 

  64. Zalkovskij M, Malureanu R, Kremers C, Chigrin D N, Novitsky A, Zhukovsky S, Tang P T, Jepsen P U, Lavrinenko A V. Optically active Babinet planar metamaterial film for terahertz polarization manipulation. Laser & Photonics Reviews, 2013, 7(5): 810–817

    Google Scholar 

  65. Markovich D L, Andryieuski A, Zalkovskij M, Malureanu R, Lavrinenko A V. Metamaterial polarization converter analysis: limits of performance. Applied Physics B, 2013, 112(2): 143–152

    Google Scholar 

  66. Chiang Y J, Yen T J. A composite-metamaterial-based terahertzwave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Applied Physics Letters, 2013, 102(1): 011129

    Google Scholar 

  67. Weis P, Paul O, Imhof C, Beigang R, Rahm M. Strongly birefringent metamaterials as negative index terahertz wave plates. Applied Physics Letters, 2009, 95(17): 171104

    Google Scholar 

  68. Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337

    Google Scholar 

  69. Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Advanced Materials, 2013, 25(33): 4567–4572

    Google Scholar 

  70. Neu J, Beigang R, Rahm M. Metamaterial-based gradient index beam steerers for terahertz radiation. Applied Physics Letters, 2013, 103(4): 041109

    Google Scholar 

  71. Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304–1307

    Google Scholar 

  72. Cong L Q, Cao W, Zhang X Q, Tian Z, Gu J Q, Singh R, Han J G, Zhang W L. A perfect metamaterial polarization rotator. Applied Physics Letters, 2013, 103(17): 171107

    Google Scholar 

  73. Cong L Q, Xu N N, Gu J Q, Singh R, Han J G, Zhang WL. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser & Photonics Reviews, 2014: Early View

    Google Scholar 

  74. Hu D, Wang X K, Feng S F, Ye J S, Sun W F, Kan Q, Klar P J, Zhang Y. Ultrathin terahertz planar elements. Advanced Optical Materials, 2013, 1(2): 186–191

    Google Scholar 

  75. Jiang X Y, Ye J S, He J W, Wang X K, Hu D, Feng S F, Kan Q, Zhang Y. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Optics Express, 2013, 21(24): 30030–30038

    Google Scholar 

  76. Burckel D B, Wendt J R, Ten Eyck G A, Ginn J C, Ellis A R, Brener I, Sinclair M B. Micrometer-scale cubic unit cell 3D metamaterial layers. Advanced Materials, 2010, 22(44): 5053–5057

    Google Scholar 

  77. Randhawa J S, Gurbani S S, Keung M D, Demers D P, Leahy-Hoppa MR, Gracias D H. Three-dimensional surface current loops in terahertz responsive microarrays. Applied Physics Letters, 2010, 96(19): 191108

    Google Scholar 

  78. Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530

    Google Scholar 

  79. Moser H O, Rockstuhl C. 3D THz metamaterials from micro/nanomanufacturing. Laser & Photonics Reviews, 2012, 6(2): 219–244

    Google Scholar 

  80. Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak MH, Kang K Y, Lee Y H, Park N, Min B. A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470(7334): 369–373

    Google Scholar 

  81. Kadow C, Fleischer S B, Ibbetson J P, Bowers J E, Gossard A C, Dong J W, Palmstrom C J. Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics. Applied Physics Letters, 1999, 75(22): 3548–3550

    Google Scholar 

  82. Chen H T, Padilla WJ, Zide JMO, Bank S R, Gossard A C, Taylor A J, Averitt R D. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Optics Letters, 2007, 32(12): 1620–1622

    Google Scholar 

  83. Roy Chowdhury D, Singh R, O’Hara J F, Chen H T, Taylor A J, Azad A K. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor. Applied Physics Letters, 2011, 99(23): 231101

    Google Scholar 

  84. Takano K, Shibuya K, Akiyama K, Nagashima T, Miyamaru F, Hangyo M. A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region. Journal of Applied Physics, 2010, 107(2): 024907

    Google Scholar 

  85. Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J, Zhang W. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nature Communications, 2012, 3: 1151

    Google Scholar 

  86. Roy Chowdhury D, Singh R, Taylor A J, Chen H T, Azad A K. Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial. Applied Physics Letters, 2013, 102(1): 011122

    Google Scholar 

  87. Chen H T, O’Hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B, Padilla W J. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics, 2008, 2(5): 295–298

    Google Scholar 

  88. Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N, Soukoulis C M. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B, 2009, 79(16): 161102

    Google Scholar 

  89. Shen N H, Massaouti M, Gokkavas M, Manceau J M, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis C M. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 2011, 106(3): 037403

    Google Scholar 

  90. Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X. Photoinduced handedness switching in terahertz chiral metamolecules. Nature Communications, 2012, 3: 942

    Google Scholar 

  91. Zhang S, Park Y S, Li J, Lu X, Zhang W, Zhang X. Negative refractive index in chiral metamaterials. Physical Review Letters, 2009, 102(2): 023901

    Google Scholar 

  92. Zhou J F, Chowdhury D R, Zhao R K, Azad A K, Chen H T, Soukoulis C M, Taylor A J, O’Hara J F. Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Physical Review B, 2012, 86(3): 035448

    Google Scholar 

  93. Fan K B, Zhao X G, Zhang J D, Geng K, Keiser G R, Seren H R, Metcalfe G D, Wraback M, Zhang X, Averitt R D. Optically tunable terahertz metamaterials on highly flexible substrates. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 702–708

    Google Scholar 

  94. Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597–600

    Google Scholar 

  95. Chen H T, Padilla WJ, Cich M J, Azad A K, Averitt R D, Taylor A J. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151

    Google Scholar 

  96. Chen H T, Palit S, Tyler T, Bingham CM, Zide J MO, O’Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J. Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Applied Physics Letters, 2008, 93(9): 091117

    Google Scholar 

  97. Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S, Padilla WJ. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Optics Express, 2011, 19(10): 9968–9975

    Google Scholar 

  98. Chen H T, Lu H, Azad A K, Averitt R D, Gossard A C, Trugman S A, O’Hara J F, Taylor A J. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Optics Express, 2008, 16(11): 7641–7648

    Google Scholar 

  99. Paul O, Imhof C, Lägel B, Wolff S, Heinrich J, Höfling S, Forchel A, Zengerle R, Beigang R, Rahm M. Polarization-independent active metamaterial for high-frequency terahertz modulation. Optics Express, 2009, 17(2): 819–827

    Google Scholar 

  100. Peralta X G, Brener I, Padilla WJ, Young EW, Hoffman A J, Cich M J, Averitt R D, Wanke M C, Wright J B, Chen H T, O’Hara J F, Taylor A J, Waldman J, Goodhue W D, Li J, Reno J. External modulators for terahertz quantum cascade lasers based on electrically-driven active metamaterials. Metamaterials, 2010, 4(2–3): 83–88

    Google Scholar 

  101. Chan WL, Chen H T, Taylor A J, Brener I, Cich M J, Mittleman D M. A spatial light modulator for terahertz beams. Applied Physics Letters, 2009, 94(21): 213511

    Google Scholar 

  102. Shrekenhamer D, Montoya J, Krishna S, Padilla W J. Four-color metamaterial absorber THz spatial light modulator. Advanced Optical Materials, 2013, 1(12): 905–909

    Google Scholar 

  103. Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range. Applied Physics Letters, 2014, 104(9): 091115

    Google Scholar 

  104. Fan K, Hwang H Y, Liu M, Strikwerda A C, Sternbach A, Zhang J, Zhao X, Zhang X, Nelson K A, Averitt R D. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs. Physical Review Letters, 2013, 110(21): 217404

    Google Scholar 

  105. Scalari G, Maissen C, Turcinková D, Hagenmüller D, De Liberato S, Ciuti C, Reichl C, Schuh D, Wegscheider W, Beck M, Faist J. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 2012, 335(6074): 1323–1326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hou-Tong Chen.

Additional information

This paper is dedicated to the fond memory of my friend and classmate Dr. Hua Zhong, who passed away on Dec. 8, 2013

Hou-Tong Chen received his B.S. and M.S. degrees from the University of Science and Technology of China in 1997 and 2000, respectively, and Ph.D degree from Rensselaer Polytechnic Institute in 2004, all in physics. Between 05/2005 and 05/2008, he was a postdoctoral research associate in Los Alamos National Laboratory (LANL). Since 06/2008, he has been a technical staff member in the Center for Integrated Nanotechnologies (CINT) at LANL, a Department of Energy/Office of Science Nanoscale Science Research Center (NSRC) jointly operated by Los Alamos and Sandia National Laboratories as a national user facility. His research interests are in metamaterials and terahertz science and technology. He has co-authored over 50 publications in peer-reviewed journals including Science, Nature, Nature Photonics, and Physical Review Letters, which have been totally cited over 2400 times according to ISI Web of Science. He has delivered over 50 invited presentations in international conferences as well as colloquia and seminars in research institutions. He received LANL Achievement Awards in 2013 and 2007. He has been serving as a member of the Editorial Committee in Scientific Reports, International Journal of Terahertz Science and Technology and Frontiers of Optoelectronics. He also served many conferences and workshops in the organizing committee, advisory committee, or technical program committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HT. Semiconductor activated terahertz metamaterials. Front. Optoelectron. 8, 27–43 (2015). https://doi.org/10.1007/s12200-014-0436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-014-0436-0

Keywords

Navigation