Skip to main content
Log in

A Single-Resonant-Structure and Optically Transparent Broadband THz Metamaterial Absorber

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Broadband THz metamaterial absorbers have important applications in terahertz modulation, imaging, and communication, but current designs usually involve complex nesting or stacking resonant structures. This paper reports a single-resonant-structure and optically transparent broadband terahertz metamaterial absorber. The absorber demonstrates > 80% broadband absorption in a wide frequency range of 0.4~1.04 THz, or 88.9% of the central frequency. The thickness of the absorber is only 1/15 of the wavelength corresponding to the lowest absorption frequency. The absorption spectrum has been experimentally verified with a reflective terahertz time-domain spectrometer. Further study shows that the absorber is insensitive to the polarization angle, and the absorbance decreases very little for incident angles less than 30°. The absorption spectrum can be finely tuned by varying the structure parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Zhu, S. Vegesna, Y. Zhao, et al., Tunable dual-band terahertz metamaterial bandpass filter. Optics Letters, 38.14(2013):2382–2384.

    Article  Google Scholar 

  2. C. M. Watts, D. Shrekenhamer, J. Montoya, et al., Terahertz compressive imaging with metamaterial spatial light modulators. Nature Photonics, 8.8(2014):605–609.

    Article  Google Scholar 

  3. H. Chen, W. J. Padilla, J. M. Zide, et al., Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Optics Letters, 32.12(2007):1620–1622.

    Article  Google Scholar 

  4. S. Lai, Y. Wu, W. Wu, W. Gu, An optically transparent ultra-broadband microwave absorber. IEEE Photonics Journal, 9.6(2017):1–10.

    Article  Google Scholar 

  5. F. Ma, Y. Lin, X. Zhang, C. Lee, Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light: Science & Applications, 3.5(2014) :e171.

    Article  Google Scholar 

  6. B. Wang, Q. Xie, G. Dong, Huang, W. Huang, Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics Technology Letters, 30.8(2018):1115–1118.

    Article  Google Scholar 

  7. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 16.10(2008):.7181–7188.

    Article  Google Scholar 

  8. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, A dual band terahertz metamaterial absorber. Journal of Physics D Applied Physics, 43. 22(2010): 225102.

    Article  Google Scholar 

  9. J. Zhu, Z. Ma, W. Sun, et al., Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters, 105. 2(2014):4773–4779.

    Google Scholar 

  10. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Optics Express, 20. 1(2012): 635–643.

    Article  Google Scholar 

  11. B. Cai, C. Shi, L. Chen, S. Zhuang, X. Zang, Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure. Optics Express, 23.3(2015):2032–2039.

    Article  Google Scholar 

  12. L. Huang et al., Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Optics Letter,37.2(2012): 154–156.

    Article  Google Scholar 

  13. G. Wang, M. Liu, X. Hu, L. Kong, L. Cheng, Z. Chen, Broadband and ultra-thin terahertz metamaterial absorber based on multi-circular patches. The European Physical Journal B, 86.7(2013):1–9.

    Google Scholar 

  14. W. Pan, X. Yu, J. Zhang and W. Zeng, A broadband terahertz metamaterial absorber based on two circular split rings. IEEE Journal of Quantum Electronics, 53.1(2017):1–6.

    Article  Google Scholar 

  15. Y. Lu, J. Li, S. Zhang, J. Sun, J. Yao, Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures. Applied Optics, 57.21(2018):6269–6275.

    Article  Google Scholar 

  16. S. He, Y. Jin, Y. Ye, Omnidirectional polarization-insensitive and broadband thin absorber in the terahertz regime. Journal of the Optical Society of America B: Optical Physics, 27. 3(2010):498–504.

    Article  Google Scholar 

  17. J. Grant, Y. Ma, S. Saha, A. Khalid, D. R. S. Cumming, Polarization insensitive broadband terahertz metamaterial absorber. Optics Letter,36. 17(2011): 3476–3478.

    Article  Google Scholar 

  18. W. Pan, X. Yu, J. Zhang, W. Zeng, A novel design of broadband terahertz metamaterial absorber based on nested circle rings. IEEE Photonics Technology Letters, 28. 21(2016):.2335–2338.

    Article  Google Scholar 

  19. S. Tan, F. Yan, N. Xu, J Zheng, W. Wang, W. Zhang, Broadband terahertz metamaterial absorber with two interlaced fishnet layers. AIP Advances, 8. 2(2018) :025020.

    Article  Google Scholar 

  20. G. Dayal, S. Ramakrishna. Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane [J]. Optics Express,22.12(2014):15104–15110.

    Article  Google Scholar 

  21. Z. Shi, L. Song, T. Zhang. Optical and electrical characterization of pure PMMA for terahertz wide-band metamaterial absorbers [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 40.1(2019):80–91.

    Article  Google Scholar 

  22. Y. Wu, J. Wang, S. Lai, et al. Transparent and flexible broadband absorber for the sub-6G band of 5G mobile communication [J]. Optical Materials Express, 8.11(2018): 3351–3358.

    Article  Google Scholar 

  23. Y. Wu, J. Wang, S. Lai, et al. A transparent and flexible microwave absorber covering the whole WiFi waveband. AIP Advances, 9.2 (2019): 025309.

    Article  Google Scholar 

  24. Z. Shi, L. Song, T. Zhang, Terahertz reflection and visible light transmission of ITO films affected by annealing temperature and applied in metamaterial absorber. Vacuum, 149(2018):.12–18.

    Article  Google Scholar 

  25. Y. Deng, Q. Sun, J Yu, Y. Lin, and J. Wang, Broadband high-absorbance coating for terahertz radiometry. Optics Express, 21. 5(2013): 5737–5742.

    Article  Google Scholar 

  26. Y. Zhang, L. Zhang, P. Sun, Y. He, Y. Zou, and Y. Deng, Extracting complex refractive index from polycrystalline glucose with self-referenced method for terahertz time-domain reflection spectroscopy. Applied Spectroscopy, 70. 7(2016):1102–1108.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61627802 and Grant 11874333, in part by the Fundamental Research Funds for the Central Universities under Grant 30917012202, in part by the Aeronautical Science Foundation of China under Grant 2017ZF59005, and in part by the Key Research and Development Plan of Jiangsu Province under Grant BE2018728. The authors thank Prof. Ziran Zhao and Prof. Yingxin Wang at Tsinghua University for valuable discussions about the experiments. The authors wish to thank the anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Gu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Deng, Y., Wu, Y. et al. A Single-Resonant-Structure and Optically Transparent Broadband THz Metamaterial Absorber. J Infrared Milli Terahz Waves 40, 648–656 (2019). https://doi.org/10.1007/s10762-019-00598-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00598-w

Keywords

Navigation