Skip to main content
Log in

Hybrid material based on clay and calixarenic derivatives

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hybrid nanocomposites were obtained in this study by solid–solid reaction based on calixarenic derivatives and natural Tunisian clay: clay-calixarene. For this purpose, two calixarenic derivatives were synthesized and their properties were studied. Results show their affinity towards bivalent mercury and lithium by complexation in a homogeneous medium and vis-a-vis the rubidium by extraction of water to dichloromethane. The clay was purified and characterized by means of X-ray diffraction, X-ray fluorescence, cation exchange capacity and BET techniques. Intercalation of the calixarenes in the interfoliar space of the clay has been demonstrated by the spacing of the basal space after reaction and the comparison of infrared spectra confirms that the reaction has taken place. In addition, these hybrids have developed important specific surfaces area. Both nanocomposites prepared are among the first synthesis of clay-calixarenic hybrids in solid state. According to the calixarenic structures, it is assumed that these materials were of class II hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Sanchez, B. Julian, P. Belleville, M. Popall, J. Mater. Chem. 15, (35–36), 3559 (2005)

    Article  CAS  Google Scholar 

  2. C. Sanchez, P. Belleville, M. Popall, L. Nicole, Chem. Soc. Rev. 40(2), 696 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. L. Nicole, L. Rozes, C. Sanchez, Adv. Mat. 22(29), 3208 (2010)

    Article  CAS  Google Scholar 

  4. K.C. Krogman, T. Druffel, M.K. Sunkara, Nanotechnology. 16(7), S338 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. C. Li, M. Liu, L. Yan, N. Liu, D. Li, J. Liu, X. Wang, J. Lumin. 190, 1–5 (2017)

    Article  CAS  Google Scholar 

  6. V.A. Soloukhin, W. Posthumus, J.C. Brokken-Zijp, J. Loos, Polymer 43(23), 6169 (2002)

    Article  CAS  Google Scholar 

  7. E. Barna, B. Bommer, J. Kursteiner, A. Vital, V.O. Trzebiatowski, W. Koch, B. Schmid, T. Graule, Appl. Sci. Manuf. 36(4), 473 (2005)

    Article  CAS  Google Scholar 

  8. S. Takahashi, H.A. Goldberg, C.A. Feeney, D.P. Karim, M. Farrell, K. Oleary, D.R. Paul, Polymer 47(9), 3083 (2006)

    Article  CAS  Google Scholar 

  9. T.-P. Nguyen, S.-H. Yang, Polymer-Based Nanocomposites for Energy and Environmental Applications (Elsevier, New York, 2018)

    Google Scholar 

  10. G. Schottner, K. Rose, U. Posset, J. Sol-Gel Sci. Technol. 27(1), 71 (2003)

    Article  CAS  Google Scholar 

  11. S. Shankar, A. Oun, J. WhanRhim, Int. J. Biol. Macromol. 107, 17 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. E. Bagheri, L. Ansari, K. Abnous, S.M. Taghdisi, F. Charbgoo, M. Ramezani, M.A. bolandi, J. Controll. Release 277, 57 (2018)

    Article  CAS  Google Scholar 

  13. S. Khelifi, F. Ayari, A. Choukchou Braham, D.B. Chehimi, J. Porous Mater. 25(3), 885–896 (2017)

    Google Scholar 

  14. A.B. Othman, Y.H. Lee, K. Ohto, R. Abidi, Y. Kim, J. Vicens, J. Incl. Phenom. Macrocycl. Chem. 62(1–2), 187 (2008)

    Article  CAS  Google Scholar 

  15. N. Khaorapapong, M. Ogawa, Appl. Clay Sci. 35(1–2), 31 (2007)

    Article  CAS  Google Scholar 

  16. I. Mantin, Comptes Rendus des Séances de l’Académie des Sciences, Série D: Sciences Naturelles 269, 815 (1969)

    CAS  Google Scholar 

  17. F. Ayari, E. Srasra, M. Trabelsi-Ayadi, Desalination 185(1–3), 391 (2005)

    Article  CAS  Google Scholar 

  18. A. Aarfane, A. Salhi, M. Elkrati, S. Tahiri, M. Monkade, E.K. Lhadi, M. Bensitel, J. Mater. Environ. Sci. 5(6), 1927 (2014)

    CAS  Google Scholar 

  19. I.L. Konan, J. Soro, J.Y. Andji, S. Oyetola, G. Kra, J. Soc. Ouest-Afr chim. 30, 29 (2010)

    Google Scholar 

  20. O. Touret, C.H. Pons, D. Tessier, Y. Tardy, Clay Miner. 25(2), 217 (1990)

    Article  CAS  Google Scholar 

  21. R.L. Frost, J. Kristof, É Makó, W.N. Martens, Langmuir. 18(17), 6491 (2002)

    Article  CAS  Google Scholar 

  22. R.L. Frost, É Makó, J. Kristof, J.T. Kloprogge, Mol. Biomol. Spectrosc. 58(13), 2849 (2002)

    Article  CAS  Google Scholar 

  23. É Makó, R.L. Frost, J. Kristof, E. Horvath, J. Colloid Interface Sci. 244(2), 359 (2001)

    Article  CAS  Google Scholar 

  24. W.P. Kelley, Am. Minerlog. 30(1–2), 1 (1945)

    CAS  Google Scholar 

  25. W.P. Kelley, W.H. Dore, A.O. Woodford, S.M. Brown, Soil Sci. 48(3), 201 (1939)

    Article  CAS  Google Scholar 

  26. W.P. Kelley, H. Jenny, S.M. Brown, Soil Sci. 41(4), 259 (1936)

    Article  Google Scholar 

  27. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, J. Am. Chem. Soc. 62(7), 1723 (1940)

    Article  CAS  Google Scholar 

  28. S. Yariv, I. Lapides, J. Mater. Synth. Process. 8(3–4), 223 (2000)

    Article  CAS  Google Scholar 

  29. R. Hoffmann, G. Brindley, Geochim et Cosmochim Acta. 20(1), 15 (1960)

    Article  CAS  Google Scholar 

  30. F.H. Frimmel, Chem. Soils, Angew. Chem. 102(4), 463 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadhila Ayari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A.B., Ayari, F., Abidi, R. et al. Hybrid material based on clay and calixarenic derivatives. J Porous Mater 26, 493–504 (2019). https://doi.org/10.1007/s10934-018-0630-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0630-3

Keywords

Navigation