Skip to main content
Log in

Facile and fast, one pot microwave synthesis of metal organic framework copper terephthalate and study CO2 and CH4 adsorption on it

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Copper terephthalate, metal organic framework (MOF) [Cu(BDC)] (H2BDC = benzene-1,4-di-carboxylic acid) was synthesized by simple and fast microwave method. Different samples were synthesized by modifying the irradiation time, irradiation power and concentrations of reactants. The samples were characterized by means of FT-IR analysis, X-ray diffraction (XRD), N2 adsorption/desorption isotherms, scanning electron microscopy, elemental analysis and thermo gravimetric analysis. The effect of synthesis conditions on crystallinity, crystal size, specific surface area and morphology of the prepared samples were investigated. The XRD patterns of all synthesized samples confirmed the formation of Cu(BDC) without any phase impurities. The samples with the highest Langmuir surface area of 624 and 611 m2/g were considered for CO2 and CH4 adsorption isotherms. Adsorption isotherms of CH4 and CO2 were determined by volumetric method in the range of 0.1–60 bar pressure at normal temperature. The highest adsorption capacity for CO2 and CH4 was determined 10.4 and 5.2 mmol/g, respectively at 303.15 K and 47.7 bar equilibrium pressure. The highest selectivity of CO2 by the synthesized MOF was calculated sixfold over CH4 adsorption around normal pressure and the results have shown the capability of the synthesized Cu(BDC) for separation of CO2 from natural gas at low pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A:

Adsorption potential

CBET :

BET adsorption isotherm relating to the energy of surface interaction (L/mg)

Cµ :

Adsorption amount (mg/g)

Cµs :

Theoretical isotherm saturation capacity (mg/g)

B:

Isothermsadsorptionconstants (dm3/mg)

d:

Interlayer spacing (m)

K:

Freundlich isotherm constant (mg/g)

N:

Total of sample size

p:

Number of parameters

qe :

Equilibrium concentration (mg/L)

qe,calc :

Calculated adsorbate concentration at equilibrium (mg/g)

qe,meas :

Measured adsorbate concentration at equilibrium (mg/g)

P:

Equilibrium concentration (mg/L)

P0 :

Adsorbate monolayer saturation concentration (mg/L)

r:

Inverse power of distance from the surface

R:

Gas constant (8.34 J/mol K)

R2 :

Sample R-square

T:

Temperature (K)

t:

Toth isotherm constant

References

  1. Q. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 4, 42–55 (2011)

    Article  CAS  Google Scholar 

  2. H. Yang, Z.H. Xu, M. Fan, R. Gupta, R. Slimane, A. Bland, I. Wright, J. Environ. Sci. 20, 14–27 (2008)

    Article  CAS  Google Scholar 

  3. J.S. Lee, J.H. Kim, J.T. Kim, J.K. Suh, J.M. Lee, C.H. Lee, J. Chem. Eng. Data 47, 1237–1242 (2002)

    Article  CAS  Google Scholar 

  4. G. Yin, Z. Liu, Q. Liu, W. Wu, Chem. Eng. J. 230, 133–140 (2013)

    Article  CAS  Google Scholar 

  5. S.L. Sema, M.A. Oliver-Tolentino, M.L. Lopez-Nuriez, A.S. Cruz, A.G. Vargas, R.C. Sierra, H.I. Beltran, J. Flores, J. Alloy Comp. 540, 113–120 (2012)

    Article  Google Scholar 

  6. K.M. Choi, H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang, O.M. Yaghi, ACS Nano 8(7), 7451–7457 (2014)

    Article  CAS  Google Scholar 

  7. S. Lee, J. Yoon, Y. Seo, M. Kim, S.K. Lee, U. Lee, Y. Hwang, Y. Bae, J. Chang, Microporous Mesoporous Mater. 193, 160–165 (2014)

    Article  CAS  Google Scholar 

  8. H.R. Abid, H. Tian, H.M. Ang, A.O. Tade, C.E. Buckley, S. Wang, Chem. Eng. J. 187, 415–420 (2012)

    Article  CAS  Google Scholar 

  9. Y. Zhao, M. Seredych, J. Jagiello, Q. Zhong, T.J. Bandosz, Chem. Eng. J. 239, 399–407 (2014)

    Article  CAS  Google Scholar 

  10. A. Marti, N. Nijem, Y.J. Chabal, K.J. Balkus Jr, Microporous Mesoporous Mater. 174, 100–107 (2013)

    Article  CAS  Google Scholar 

  11. S.R. Zhang, D. Du, J. Qin, S. Li, W.W. He, Y.Q. Lan, Z.M. Su, Inorg. Chem. 53, 8105–8113 (2014)

    Article  CAS  Google Scholar 

  12. W. Zhang, P. Jiang, Y. Wang, J. Zhang, J. Zheng, P. Zhang, Chem. Eng. J. 257, 28–35 (2014)

    Article  CAS  Google Scholar 

  13. S. Rostamnia, H. Xin, N. Nouruzi, Microporous Mesoporous Mater. 179, 99–103 (2013)

    Article  CAS  Google Scholar 

  14. X. Zhao, Y. Jin, F. Zhang, Y. Zhong, W. Zhu, Chem. Eng. J. 239, 33–41 (2014)

    Article  CAS  Google Scholar 

  15. N.J. Hinks, A.C. Mckinlay, B. Xiao, P.S. Wheatley, R.E. Morris, Microporous Mesoporous Mater. 129, 330–334 (2010)

    Article  CAS  Google Scholar 

  16. K. Yang, Q. Sun, F. Xue, D. Lin, J. Hazard. Mater. 195, 124–131 (2011)

    Article  CAS  Google Scholar 

  17. N. Zhang, X. Yang, X. Yu, Y. Jia, J. Wang, L. Kong, Z. Jin, B. Sun, T. Luo, J. Liu, Inorg. Chem. 53, 8105–8113 (2014)

    Article  CAS  Google Scholar 

  18. B.K. Jung, Z. Hasan, S.H. Jhung, Chem. Eng. J. 234, 99–105 (2013)

    Article  CAS  Google Scholar 

  19. N. Lamiaa, M. Jorge, M.A. Granato, F. Almeida Paz, H. Chevrea, A. Rodrigues, Chem. Eng. Sci. 64, 3246–3259 (2009)

    Article  Google Scholar 

  20. B. Arstad, H. Fjellvang, K. Kongshaug, O. Svang, R. Blom, Adsorption 14, 755–762 (2008)

    Article  CAS  Google Scholar 

  21. T. MacDonald, D. D’Alessandro, R. Krishna, J. Long, Chem. Sci. 2, 2022–2028 (2011)

    Article  Google Scholar 

  22. A.R. Millward, O.M. Yaghi, J. Am. Chem. Soc. 127, 17998–17999 (2005)

    Article  CAS  Google Scholar 

  23. S. Bourrelly, P.L. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Ferey, J. Am. Chem. Soc. 127, 13519–13521 (2005)

    Article  CAS  Google Scholar 

  24. D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Proc. Natl. Acad. Sci. USA 106, 20637–20640 (2009)

    Article  CAS  Google Scholar 

  25. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijin, F. Xamena, J. Gascon, Nat. Mater. 14, 48–55 (2015)

    Article  CAS  Google Scholar 

  26. C.G. Carson, K. Hardcastle, J. Schwartz, X. Liu, C. Hoffmann, R.A. Gerhardt, R. Tannenbaum, Eur. J. Inorg. Chem. 16, 2338–2343 (2009)

    Article  Google Scholar 

  27. E.S. Sanil, K. Cho, S. Lee, U. Lee, S. Ryu, H. Lee, J. Chang, Y. Hwang, J. Porous Mater. 22, 171–178 (2015)

    Article  CAS  Google Scholar 

  28. W. Liang, D. D’Alessandro, Chem. Commun. 49, 3706–3708 (2013)

    Article  CAS  Google Scholar 

  29. K. Seki, S. Takamizawa, W. Mori, Chem. Lett. 122–123 (2001)

  30. C.R. Patra, A. Gedanken, New J. Chem. 28, 1060–1065 (2004)

    Article  CAS  Google Scholar 

  31. M. Salavati Niasari, S. Khoshroozi, M. Sabet, J. Clust. Sci. 24, 299–313 (2013)

    Article  CAS  Google Scholar 

  32. M. Kamazani, M. Salavati Niasari, M. Sadeghinia, Superlattices Microstruct. 63, 248–257 (2013)

    Article  Google Scholar 

  33. K. Ohta, T. Nishizawa, T. Nishiquchi, R. Shimizu, Y. Hattori, S. Inoue, M. Katayama, K. Mizu-Uchi, T. Kono, J. Mater. Chem. A. 2, 2773–2780 (2014)

    Article  CAS  Google Scholar 

  34. M. Masoudi-Nejad, S. Fatemi, J. Ind. Eng. Chem. 20, 4045–4050 (2014)

    Article  CAS  Google Scholar 

  35. D. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Article  CAS  Google Scholar 

  36. P.I. Ravikovitch, A.V. Neimark, Langmuir 18, 2301–2306 (2003)

    Google Scholar 

  37. K. Morishige, N. Tateishi, J. Chem. Phys. 119, 2301 (2003)

    Article  CAS  Google Scholar 

  38. A. Grosman, C. Ortega, Langmuir 1, 10515–10521 (2005)

    Article  Google Scholar 

  39. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2–10 (2010)

    Article  CAS  Google Scholar 

  40. D.D. Do, Adsorption Analysis, Equilibria and kinetics (Imperial College Press, London, 1998)

    Google Scholar 

  41. H. Kumagai, M. Akita-Tanaka, K. Inoue, K. Takahashi, H. Kobayashi, S. Vilminot, M. Kurmoo, Inorg. Chem. 46, 5949–5956 (2007)

    Article  CAS  Google Scholar 

  42. M. Thommes, Chem. Ing. Tech. 82, 1059–1073 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this research by Iran University of science and technology and Tehran University is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Tadjarodi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tari, N.E., Tadjarodi, A., Tamnanloo, J. et al. Facile and fast, one pot microwave synthesis of metal organic framework copper terephthalate and study CO2 and CH4 adsorption on it. J Porous Mater 22, 1161–1169 (2015). https://doi.org/10.1007/s10934-015-9992-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-9992-y

Keywords

Navigation