Skip to main content
Log in

Simultaneous control of rod length and pore diameter of SBA-15 for PPL loading

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous silica materials are attractive materials for immobilizing enzymes because of their well-ordered structures, large surface area are pore volume. Diffusion of large enzyme molecules such as porcine pancreatic lipase (PPL) through the lengthy channels of MPS takes place too slowly. Therefore, the squat of the enzyme at the pore mouth entrance, actually makes the rest of the channel useless. In this study, to overcome this problem, synthesis parameters of SBA-15 were changed, since along with pore diameter increasing, the mesochannel length becomes shorter. The main point to obtain a well-ordered 2D hexagonal pore structure was the pre-hydrolysis of tetraethyl orthosilicate (TEOS) before the addition of 1,3,5-trimethyl benzene as a micelle swelling agent. Due to the strong effect of zirconium in changing the morphology of SBA-15 particles, we modified SBA-15 in the presence of a small amount of ZrOCl2 in the synthesis solution under acidic conditions. As a result, mesochannel length of SBA-15-Zr was shortened from 600 to <200 nm. The morphology of mesoporous silica was also changed from rod-like to platelet, because of the accelerating effect of Zr(IV) on the self-assembly rate of P123 and TEOS condensation. Characteristic results conducted by low angle XRD, high resolution transmission electron microscopy and nitrogen adsorption, confirmed tuning effect of Zr(IV) in SBA-15. Furthermore, it was shown that the number of pore entrances increases with decreasing the length of SBA-15 mesochannels, leading to obvious improvement of enzyme uptake. PPL has been successfully immobilized in the mesoporous channels of SBA-15-Zr. The total amount of lipase adsorbed on the mesoporous SBA-15-Zr was measured by thermal gravimetric analysis. The largest PPL adsorption capacity was 784 mg/g belonging to the SBA-15-Zr with the length of 150 nm and the mean pore size diameter of 9.22 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 45, 3216–3251 (2006)

    Article  CAS  Google Scholar 

  2. K. Yasutaka, Y. Takato, K. Takashi, M. Kohsuke, Y. Hiromi, J. Phys. Chem. B 115, 10335–10345 (2011)

    Article  CAS  Google Scholar 

  3. A. Katiyar, S. Yadav, P.G. Smirniotis, N.G. Pinto, J. Chromatogr. A 1122, 13–20 (2006)

    Article  CAS  Google Scholar 

  4. M. Wang, Q. Liu, J. Wang, T. Xiu, J. Am. Ceram. Soc. 91, 2405–2408 (2008)

    Article  CAS  Google Scholar 

  5. D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 110, 1857–1959 (2010)

    Article  CAS  Google Scholar 

  6. J. Lei, J. Fan, C. Yu, L. Zhang, S. Jiang, B. Tu, D. Zhao, Microporous Mesoporous Mater. 73, 121–128 (2004)

    Article  CAS  Google Scholar 

  7. I.V. Pavlidis, A.A. Tzialla, A. Enotiadis, H. Stamatis, D. Gournis, in Biocatalysis in Polymer Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, 2010), pp. 35–63

  8. A. Popat, S.B. Hartono, F. Stahr, J. Liu, S.Z. Qiao, G. Qing Lu, Nanoscale 3, 2801–2818 (2011)

    Article  CAS  Google Scholar 

  9. S. Datta, L.R. Christena, Y. Rajaram, Biotech 3, 1–9 (2013)

    Google Scholar 

  10. A.A. Mendes, P.C. Oliveira, H.F. de Castro, J. Mol. Catal. B Enzym. 78, 119–134 (2012)

    Article  CAS  Google Scholar 

  11. P. Tufvesson, U. Törnvall, J. Carvalho, A.J. Karlsson, R. Hatti-Kaul, J. Mol. Catal. B Enzym. 68, 200–205 (2011)

    Article  CAS  Google Scholar 

  12. S. Hudson, J. Cooney, E. Magner, Angew. Chem. Int. Ed. 47, 8582–8594 (2008)

    Article  CAS  Google Scholar 

  13. D. Gaffney, J. Cooney, E. Magner, Top. Catal. 55, 1101–1106 (2012)

    Article  CAS  Google Scholar 

  14. Y. Li, G. Zhou, C. Li, D. Qin, W. Qiao, B. Chu, Colloids Surf. A 341, 79–85 (2009)

    Article  CAS  Google Scholar 

  15. J. He, Z. Song, H. Ma, L. Yang, C. Guo, J. Mater. Chem. 16, 4307–4315 (2006)

    Article  CAS  Google Scholar 

  16. D. Zhao, J. Sun, Q. Li, G.D. Stucky, Chem. Mater. 12, 275–279 (2000)

    Article  CAS  Google Scholar 

  17. H.I. Lee, J.H. Kim, G.D. Stucky, Y. Shi, C. Pak, J.M. Kim, J. Mater. Chem. 20, 8483–8487 (2010)

    Article  CAS  Google Scholar 

  18. P. Linton, V. Alfredsson, Chem. Mater. 20, 2878–2880 (2008)

    Article  CAS  Google Scholar 

  19. S.P. Naik, S. Elangovan, T. Okubo, I. Sokolov, J. Phys. Chem. C 111, 11168–11173 (2007)

    Article  CAS  Google Scholar 

  20. S.-Y. Chen, C.-Y. Tang, W.-T. Chuang, J.-J. Lee, Y.-L. Tsai, J.C.C. Chan, C.-Y. Lin, Y.-C. Liu, S. Cheng, Chem. Mater. 20, 3906–3916 (2008)

    Article  CAS  Google Scholar 

  21. Y. Han, J.Y. Ying, Angew. Chem. Int. Ed. 44, 288–292 (2005)

    Article  CAS  Google Scholar 

  22. H. Zhang, J. Sun, D. Ma, X. Bao, A. Klein-Hoffmann, G. Weinberg, D. Su, R. Schlögl, J. Am. Chem. Soc. 126, 7440–7441 (2004)

    Article  CAS  Google Scholar 

  23. S.-R. Zhai, S.S. Park, M. Park, M. Habib Ullah, C.S. Ha, Microporous Mesoporous Mater. 113, 47–55 (2008)

    Article  CAS  Google Scholar 

  24. S.-Y. Chen, Y.-T. Chen, J.-J. Lee, S. Cheng, J. Mater. Chem. 21, 5693–5703 (2011)

    Article  CAS  Google Scholar 

  25. S.S. Park, M. Santha Moorthy, C.S. Ha, NPG Asia Mater. 6, e96 (2014)

    Article  CAS  Google Scholar 

  26. V. Nace, Nonionic Surfactants: Polyoxyalkylene Block Copolymers, vol. 60 (CRC Press, Boca Raton, 1996)

    Google Scholar 

  27. K. Flodström, C.V. Teixeira, H. Amenitsch, V. Alfredsson, M. Lindén, Langmuir 20, 4885–4891 (2004)

    Article  Google Scholar 

  28. R. Ganguly, V.K. Aswal, P.A. Hassan, J. Colloid Interface Sci. 315, 693–700 (2007)

    Article  CAS  Google Scholar 

  29. K. Patel, P. Bahadur, C. Guo, J.H. Ma, H.Z. Liu, Y. Yamashita, A. Khanal, K. Nakashima, Eur. Polym. J. 43, 1699–1708 (2007)

    Article  CAS  Google Scholar 

  30. S.-Y. Chen, L.-Y. Jang, S. Cheng, Chem. Mater. 16, 4174–4180 (2004)

    Article  CAS  Google Scholar 

  31. X. Wang, G. Zhou, H. Zhang, S. Du, Y. Xu, C. Wang, J. Non-Cryst. Solids 357, 3027–3032 (2011)

    Article  CAS  Google Scholar 

  32. F. Kleitz, W. Schmidt, F. Schüth, Microporous Mesoporous Mater. 65, 1–29 (2003)

    Article  CAS  Google Scholar 

  33. W. Schmidt, Microporous Mesoporous Mater. 117, 372–379 (2009)

    Article  CAS  Google Scholar 

  34. L.A. Solovyov, Chem. Soc. Rev. 42, 3708–3720 (2013)

    Article  CAS  Google Scholar 

  35. V. Alfredsson, H. Amenitsch, F. Kleitz, M. Lindén, P. Linton, C. V. Teixeira, in Studies in Surface Science and Catalysis, vol. 158, Part A, ed. by N.Ž.J. Čejka, P. Nachtigall (Elsevier, Amsterdam, 2005), pp. 97–104

  36. S.-Y. Chen, T. Mochizuki, Y. Abe, M. Toba, Y. Yoshimura, Appl. Catal. B 148–149, 344–356 (2014)

    Article  Google Scholar 

  37. C.G. Sonwane, P.J. Ludovice, J. Mol. Catal. A Chem. 238, 135–137 (2005)

    Article  CAS  Google Scholar 

  38. D.H. Everett, W.I. Whitton, J. Chem. Soc. Faraday Trans. 48, 749–757 (1952)

    Article  CAS  Google Scholar 

  39. D.H. Everett, F.W. Smith, J. Chem. Soc. Faraday Trans. 50, 187–197 (1954)

    Article  CAS  Google Scholar 

  40. D.H. Everett, J. Chem. Soc. Faraday Trans. 50, 1077–1096 (1954)

    Article  CAS  Google Scholar 

  41. A. Grosman, C. Ortega, Langmuir 24, 3977–3986 (2008)

    Article  CAS  Google Scholar 

  42. J. Fan, C. Yu, L. Wang, B. Tu, D. Zhao, Y. Sakamoto, O. Terasaki, J. Am. Chem. Soc. 123, 12113–12114 (2001)

    Article  CAS  Google Scholar 

  43. M. Kruk, M. Jaroniec, C.H. Ko, R. Ryoo, Chem. Mater. 12, 1961–1968 (2000)

    Article  CAS  Google Scholar 

  44. R. Ganguly, M. Kumbhakar, V.K. Aswal, J. Phys. Chem. B 113, 9441–9446 (2009)

    Article  CAS  Google Scholar 

  45. S. Hudson, D.A. Tanner, W. Redington, E. Magner, K. Hodnett, S. Nakahara, PCCP 8, 3467–3474 (2006)

    Article  CAS  Google Scholar 

  46. C.P. Tripp, M.L. Hair, Langmuir 7, 923–927 (1991)

    Article  CAS  Google Scholar 

  47. C.P. Tripp, M.L. Hair, Langmuir 8, 1120–1126 (1992)

    Article  CAS  Google Scholar 

  48. R. Tian, O. Seitz, M. Li, W. Hu, Y.J. Chabal, J. Gao, Langmuir 26, 4563–4566 (2010)

    Article  CAS  Google Scholar 

  49. L. Lizama, T. Klimova, J. Mater. Sci. 44, 6617–6628 (2009)

    Article  CAS  Google Scholar 

  50. M. Selvaraj, B.H. Kim, T.G. Lee, Chem. Lett. 34, 1290–1291 (2005)

    Article  CAS  Google Scholar 

  51. H.H.P. Yiu, P.A. Wright, N.P. Botting, Microporous Mesoporous Mater. 44–45, 763–768 (2001)

    Article  Google Scholar 

  52. Y. Kang, J. He, X. Guo, Z. Song, Ind. Eng. Chem. Res. 46, 4474–4479 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere and grateful thanks to Material and Energy Research Center (MERC) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pazouki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferdousi, M., Pazouki, M., Hessari, F.A. et al. Simultaneous control of rod length and pore diameter of SBA-15 for PPL loading. J Porous Mater 23, 453–463 (2016). https://doi.org/10.1007/s10934-015-0099-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0099-2

Keywords

Navigation