Skip to main content

Advertisement

Log in

Biotemplated hierarchical TiO2–SiO2 composites derived from Zea mays Linn. for efficient dye photodegradation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Five typical silicon-accumulating tissues (including leaves, roots, stalks, silks, and husks) of corn plant (Zea mays Linn.), for the first time, were applied as both structure-directors and silicon-precursors to synthesize biomorphic hierarchical porous TiO2–SiO2 composites. By combination of an effective microwave-assisted HCl pretreatment and a simple in situ growth, the hierarchical porous architectures of corn tissues and silicon bodies were inherited into the obtained TiO2 frameworks, which led to both of the structure- and SiO2-introduced enhancements of photocatalytic performances. UV–visible absorption spectra indicate that all TiO2–SiO2 prepared as above exhibit enhanced visible-light harvesting efficiencies, especially in the range from 400 to 750 nm. Moreover, N2 sorption measurements show that biotemplated composite derived from corn leaves has 2.5 times higher specific surface area than that of the commercial P25. Using methylene blue as the target pollutant, all biomorphic TiO2–SiO2 were proved to possess strong adsorption abilities and enhanced photocatalytic activities. The present work may provide a new route for the fabrication of hierarchical porous silicon-based materials based on silica-rich plants and develop a new method to protect the natural environment by utilizing waste biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.G. Yu, Y.R. Su, Adv. Funct. Mater. 17, 1984 (2007)

    Article  CAS  Google Scholar 

  2. P. Xu, T. Xu, J. Lu, S.M. Gao, N.S. Hosmane, B.B. Huang, Y. Dai, Y.B. Wang, Energy Environ. Sci. 3, 1128 (2010)

    Article  CAS  Google Scholar 

  3. J.Y. Chen, G.Y. Li, Z.G. He, T.C. An, J. Hazard. Mater. 190, 416 (2011)

    Article  CAS  Google Scholar 

  4. Y. Wang, Y.R. Su, L. Qiao, L.X. Liu, Q. Su, C.Q. Zhu, X.Q. Liu, Nanotechnology 22, 225702 (2011)

    Article  CAS  Google Scholar 

  5. O.D. Velev, P.M. Tessier, A.M. Lenhoff, E.W. Kaler, Nature 401, 548 (1999)

    Article  CAS  Google Scholar 

  6. X.Y. Yang, A. Leonard, A. Lemaire, G. Tian, B.L. Su, Chem. Commun. 47, 2763 (2011)

    Article  CAS  Google Scholar 

  7. E. Beyers, E. Biermans, S. Ribbens, K. De Witte, M. Mertens, V. Meynen, S. Bals, G. Van Tendeloo, E.F. Vansant, P. Cool, Appl. Catal. B Environ. 88, 515 (2009)

    Article  CAS  Google Scholar 

  8. M. Bellardita, M. Addamo, A. Di Paola, G. Marcì, L. Palmisano, L. Cassar, M. Borsa, J. Hazard. Mater. 174, 707 (2010)

    Article  CAS  Google Scholar 

  9. X.C. Wang, J.C. Yu, C. Ho, Y.D. Hou, X.Z. Fu, Langmuir 21, 2552 (2005)

    Article  CAS  Google Scholar 

  10. C. Sanchez, H. Arribart, M.M. Giraud-Guille, Nat. Mater. 4, 277 (2005)

    Article  CAS  Google Scholar 

  11. S. Sotiropoulou, Y. Sierra-Sastre, S.S. Mark, C.A. Batt, Chem. Mater. 20, 821 (2008)

    Article  CAS  Google Scholar 

  12. T.X. Fan, S.K. Chow, D. Zhang, Prog. Mater Sci. 54, 542 (2009)

    Article  CAS  Google Scholar 

  13. M. Iwai, J. Minagawa, Photosynthesis, in Energy from the Sun: 14th International Congress On Photosynthesis, ed. by J.F. Allen, E. Gantt, J. Golbeck, B. Osmond (Springer Press, The Netherlands, 2008), p. 1017

    Google Scholar 

  14. U. Niinemets, L. Sack, Prog. Bot. 67, 385 (2006)

    Article  CAS  Google Scholar 

  15. A. Vantomme, A. Leonard, Z.Y. Yuan, B.L. Su, Colloids Surf. A Physicochem. Eng. Asp. 300, 70 (2007)

    Article  CAS  Google Scholar 

  16. J.E. Smith, Biotechnology, 3rd edn. (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  17. X.F. Li, T.X. Fan, H. Zhou, S.K. Chow, W. Zhang, D. Zhang, Q.X. Guo, H. Ogawa, Adv. Funct. Mater. 19, 45 (2009)

    Article  Google Scholar 

  18. T. Han, T.X. Fan, S.K. Chow, D. Zhang, Bioresour. Technol. 101, 6829 (2010)

    Article  CAS  Google Scholar 

  19. R.R. Unocic, F.M. Zalar, P.M. Sarosi, Y. Cai, K.H. Sandhage, Chem. Commun. 7, 796 (2004)

    Article  Google Scholar 

  20. C. Jeffryes, T. Gutu, J. Jiao, G.L. Rorrer, ACS Nano 2, 2103 (2008)

    Article  CAS  Google Scholar 

  21. V.A. King, C.F. Liu, Y. Liu, J. Food Res. Int. 34, 167 (2001)

    Article  Google Scholar 

  22. S. Neethirajan, R. Gordon, L.J. Wang, Trends Biotechnol. 27, 461 (2009)

    Article  CAS  Google Scholar 

  23. H.A. Currie, C.C. Perry, Ann. Bot. 7, 1383 (2007)

    Article  Google Scholar 

  24. F.C. Lanning, T.L. Hopkins, J.C. Loera, Ann. Bot. 45, 549 (1980)

    CAS  Google Scholar 

  25. C.C. Perry, T. Keeling-Tucker, J. Biol. Inorg. Chem. 5, 537 (2000)

    Article  CAS  Google Scholar 

  26. O. Ueno, N. Sentoku, Plant, Cell Environ. 29, 257 (2006)

    Article  CAS  Google Scholar 

  27. M. Matsuoka, R.T. Furbank, H. Fukayama, M. Miyao, Annu Rev. Plant Physiol. Plant Mol. Biol. 52, 297 (2001)

    Article  CAS  Google Scholar 

  28. Y.C. Miao, Z.B. Zhai, J. He, B. Li, J.J. Li, J.Q. Wang, Mater. Sci. Eng. C 30, 839 (2010)

    Article  CAS  Google Scholar 

  29. S.X. Liu, J.H. He, J. Am. Ceram. Soc. 88, 3513 (2005)

    Article  CAS  Google Scholar 

  30. T.H. Liou, Mater. Sci. Eng. A 364, 313 (2004)

    Article  Google Scholar 

  31. R.V. Krishnarao, J. Subrahmanyam, T. Jagadish Kumar, J. Eur. Ceram. Soc. 21, 99 (2001)

    Article  CAS  Google Scholar 

  32. H. Ma, W.W. Liu, X. Chen, Y.J. Wu, Z.L. Yu, Bioresour. Technol. 100, 1279 (2009)

    Article  CAS  Google Scholar 

  33. S. Banik, S. Bandyopadhyay, S. Ganguly, Bioresour. Technol. 87, 155 (2003)

    Article  CAS  Google Scholar 

  34. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974), p. 966

    Google Scholar 

  35. J. Zou, J.C. Gao, J. Hazard. Mater. 185, 710 (2011)

    Article  CAS  Google Scholar 

  36. M. Bonne, S. Pronier, X. Courtois, F. Can, S. Valang, J.M. Tatibouet, S. Royer, P. Marecot, D. Duprez, Solid State Sci. 12, 1002–1012 (2010)

    Article  CAS  Google Scholar 

  37. G. Li, F. Liu, Z. Zhang, J. Alloys Compd. 493, L1 (2010)

    Article  CAS  Google Scholar 

  38. C.X. He, B.Z. Tian, J.L. Zhang, J. Colloid Interface Sci. 344, 382 (2010)

    Article  CAS  Google Scholar 

  39. X.F. Chen, X.C. Wang, X.Z. Fu, Energy Environ. Sci. 2, 872 (2009)

    Article  CAS  Google Scholar 

  40. A. Nilchi, S. Janitabar-Darzi, A.R. Mahjoub, S. Rasouli-Garmarodi, Colloids Surf. A Physicochem. Eng. Asp. 361, 25 (2010)

    Article  CAS  Google Scholar 

  41. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press, New York, 1982), p. 111

    Google Scholar 

  42. N. Yao, S.L. Cao, K.L. Yeung, Microporous Mesoporous Mat. 117, 570 (2009)

    Article  CAS  Google Scholar 

  43. D. Nikolopoulos, G. Liakopoulos, I. Drossopoulos, G. Karabourniotis, Plant Physiol. 129, 235 (2002)

    Article  CAS  Google Scholar 

  44. M.E. Poulson, T.C. Vogelmann, Plant, Cell Environ. 13, 803 (1990)

    Article  Google Scholar 

  45. W.K. Smith, T.C. Vogelmann, E.H. Delucia, D.T. Bell, K.A. Shepherd, Bioscience 47, 785 (1997)

    Article  Google Scholar 

  46. B. Llano, G. Restrepo, J.M. Marin, J.A. Navio, M.C. Hidalgo, Appl. Catal. A Gen. 387, 135 (2010)

    Article  CAS  Google Scholar 

  47. X.H. Sun, C. Zheng, M.Q. Qiao, J.J. Yan, X.P. Wang, N. Guan, J. Chem. Commun. 31, 4750 (2009)

    Article  Google Scholar 

  48. Y.F. Zhao, M. Wei, J. Lu, Z.L. Wang, X. Duan, ACS Nano 12, 4009 (2009)

    Article  Google Scholar 

  49. W.Y. Dong, C.W. Lee, X.C. Lu, Y.J. Sun, W.M. Hua, G.S. Zhuang, S.C. Zhang, J.M. Chen, H.Q. Hou, D.Y. Zhao, Appl. Catal. B Environ. 95, 197 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial support from the Key Projects in the National Science and Technology Pillar Program (No. 2009BADA6B00), the National Natural Science Foundation of China (No. 31071423) and the Major Research Plan of Anhui Agriculture University Principal Youth Fund (No. 2011ZD013). We thank Prof. Han-Qing Yu, Department of Chemistry, University of Science and Technology of China, for helpful discussions and suggestions to the manuscript, and Prof. Zheng-Yan Wu, Institute of Plasma Physics, Chinese Academy of Sciences, for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei-Jiu Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Liu, WW., Zhu, SW. et al. Biotemplated hierarchical TiO2–SiO2 composites derived from Zea mays Linn. for efficient dye photodegradation. J Porous Mater 20, 1205–1215 (2013). https://doi.org/10.1007/s10934-013-9704-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9704-4

Keywords

Navigation