Skip to main content
Log in

Expression and Characterization of Recombinant Sucrose Phosphorylase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

SPase is widely used in the food, cosmetics, and pharmaceutical industries. Previously, a SPase gene was cloned from Bifidobacterium longum JCM1217 and constructed into Escherichia coli BL21. In this paper, its expression conditions were optimized. The results showed that several induction factors determined the expression efficiency of SPase. The initial cell density, IPTG concentration, and induction time and temperature significantly (p < 0.01) affected the total protein content and activity of expressed SPase. The highest expression efficiency was obtained at an initial cell density of OD600 = 0.5, with 0.05 mM IPTG, followed by shaking at 180 rpm and incubation at 30 °C for 15 h. The purified SPase had a specific activity of 122.1 U/mg, which was raised by 1.85 -fold more than that before optimization, and its recovery yield was 86%. Furthermore, SPase also showed higher thermostability. The results of this study provide essential information for the industrial production of SPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SPase:

Sucrose phosphorylase

IPTG:

Isopropyl-β-d-thiogalactoside

Glc 1-P:

α-d-Glucose 1-phosphate

References

  1. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(Pt 2):309

    Article  CAS  Google Scholar 

  2. An C, Winter KD, Desmet T, Soetaert W (2010) Sucrose phosphorylase as cross-linked enzyme aggregate: improved thermal stability for industrial applications. Biotechnol J 5(11):1192–1197

    Article  Google Scholar 

  3. Lee JH, Moon YH, Kim N, Kim YM, Kang HK, Jung JY, Abada E, Kang SS, Kim D (2008) Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli. Biotech Lett 30(4):749–754

    Article  CAS  Google Scholar 

  4. Kitao S, Sekine H (1994) α-d-Glucosyl Transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutin. Biosci Biotechnol Biochem 58(1):38

    Article  CAS  Google Scholar 

  5. Minhye S, Namyong C, Jonghoon L, Kyoungheon K (2009) Transglucosylation of caffeic acid by a recombinant sucrose phosphorylase in aqueous buffer and aqueous-supercritical CO2 media. Food Chem 115(3):1028–1033

    Article  Google Scholar 

  6. Kwon T, Kim CT, Lee JH (2007) Transglucosylation of ascorbic acid to ascorbic acid 2-glucoside by a recombinant sucrose phosphorylase from Bifidobacterium longum. Biotech Lett 29(4):611–615

    Article  CAS  Google Scholar 

  7. Goedl C, Schwarz A, Minani A, Nidetzky B (2007) Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of alpha-d-glucose 1-phosphate. J Biotechnol 129(1):77–86

    Article  CAS  Google Scholar 

  8. Nishimoto M, Kitaoka M (2007) Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk. Biosci Biotechnol Biochem 71(8):2101–2104. https://doi.org/10.1271/bbb.70320

    Article  CAS  Google Scholar 

  9. Nihira T, Nakajima M, Inoue K, Nishimoto M, Kitaoka M (2007) Colorimetric quantification of α- d -galactose 1-phosphate. Anal Biochem 371(2):259–261

    Article  CAS  Google Scholar 

  10. Kitaoka M, Aoyagi C, Hayashi K (2001) Colorimetric quantification of cellobiose employing cellobiose phosphorylase. Anal Biochem 292(1):163–166

    Article  CAS  Google Scholar 

  11. Marbach A, Bettenbrock K (2012) lac operon induction in Escherichia coli: systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA. J Biotechnol 157(1):82–88

    Article  CAS  Google Scholar 

  12. Malakar P, Venkatesh KV (2012) Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Appl Microbiol Biotechnol 93(6):2543–2549

    Article  CAS  Google Scholar 

  13. Fernándezcastané A, Caminal G, Lópezsantín J (2012) Direct measurements of IPTG enable analysis of the induction behavior of E. coli in high cell density cultures. Microb Cell Fact 11(1):1–9

    Article  Google Scholar 

  14. Castellanosmendoza A, Castroacosta RM, Olvera A, Zavala G, Mendozavera M, Garcíahernández E, Alagón A, Trujilloroldán MA, Valdezcruz NA (2014) Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli. Microb Cell Fact 13(1):1–14

    Article  Google Scholar 

  15. Kawasaki H, Nakamura N, Ohmori M, Sakai T (1996) Cloning and expression in Escherichia coli of sucrose phosphorylase gene from Leuconostoc mesenteroides No. 165. Biosci Biotechnol Biochem 60(2):322–324

    Article  CAS  Google Scholar 

  16. Weickert MJ, Best DEA, Olins PO (1996) Optimization of heterologous protein production in Escherichia coli. Curr Opin Biotechnol 7(5):494–499

    Article  CAS  Google Scholar 

  17. Blanch HW, Prausnitz JM, Curtis RA, Bratko D (2002) Molecular thermodynamics and bioprocessing: from intracellular events to bioseparations. Fluid Phase Equilib 194:31–41

    Article  Google Scholar 

  18. Nomura K, Sugimoto K, Nishiura H, Ohdan K, Nishimura T, Hayashi H, Kuriki T (2008) Glucosylation of acetic acid by sucrose phosphorylase. Biosci Biotechnol Biochem 72(1):82–87

    Article  CAS  Google Scholar 

  19. Funkenstein B, Rebhan Y, Funkenstein B, Rebhan Y (2007) Expression, purification, renaturation and activation of fish myostatin expressed in Escherichia coli: facilitation of refolding and activity inhibition by myostatin prodomain. Protein Express Purif 54(1):54–65

    Article  CAS  Google Scholar 

  20. Yeh SR, Rousseau DL (1998) Folding intermediates in cytochrome c. Nat Struct Biol 5(3):222

    Article  CAS  Google Scholar 

  21. Li ZY, Liu CP, Zhu LQ, Jing GZ, Zhou JM (2001) The chaperone activity of trigger factor is distinct from its isomerase activity during co-expression with adenylate kinase in Escherichia coli. Febs Lett 506(2):108–112

    Article  CAS  Google Scholar 

  22. Singh S, Du PJ, Pillay B, Prior BA (2000) The production of hemicellulases by Thermomyces lanuginosus strain SSBP: influence of agitation and dissolved oxygen tension. Appl Microbiol Biotechnol 54(5):698–704

    Article  CAS  Google Scholar 

  23. Shioya S, Morikawa M, Kajihara Y, Shimizu H (1999) Optimization of agitation and aeration conditions for maximum virginiamycin production. Appl Microbiol Biotechnol 51(2):164–169

    Article  CAS  Google Scholar 

  24. Lee JH, Yoon SH, Nam SH (2006) Molecular cloning of a gene encoding the sucrose phosphorylase from Leuconostoc mesenteroides B-1149 and the expression in Escherichia coli. Enzyme Microbial Technol 39(4):612–620

    Article  CAS  Google Scholar 

  25. Lee JH, Moon YH, Kim N, Kim YM, Kang HK, Jung JY, Abada E, Kang SS, Kim D (2008) Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli. Biotech Lett 30(4):749

    Article  CAS  Google Scholar 

  26. Silverstein R, Voet J, Reed D, Abeles RH (1967) Purification and mechanism of action of sucrose phosphorylase. J Biol Chem 242(242):1338–1346

    CAS  Google Scholar 

  27. Broek LAMVD., Boxtel ELV, Kievit RP, Verhoef R, Beldman G, Voragen AGJ (2004) Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 65(2):219

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the program for International S & T Cooperation Projects of Shenyang (F16-219-6-00), the research Grants of Shenyang Kay Laboratory (F17-158-1-00), and the research foundation of Shenyang Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuoping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Sun, X., Li, W. et al. Expression and Characterization of Recombinant Sucrose Phosphorylase. Protein J 37, 93–100 (2018). https://doi.org/10.1007/s10930-017-9754-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9754-6

Keywords

Navigation