Skip to main content
Log in

Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Clones of a genomic library of Bifidobacterium adolescentis were grown in minimal medium with sucrose as sole carbon source. An enzymatic fructose dehydrogenase assay was used to identify sucrose-degrading enzymes. Plasmids were isolated from the positive colonies and sequence analysis revealed that two types of insert were present, which only differed with respect to their orientation in the plasmid. An open reading frame of 1,515 nucleotides with high homology for sucrose phosphorylases was detected on these inserts. The gene was designated SucP and encoded a protein of 56,189 Da. SucP was heterologously expressed in Escherichia coli, purified, and characterized. The molecular mass of SucP was 58 kDa, as estimated by SDS-PAGE, while 129 kDa was found with gel permeation, suggesting that the native enzyme was a dimer. The enzyme showed high activity towards sucrose and a lower extent towards α-glucose-1-phosphate. The transglucosylation properties were investigated using a broad range of monomeric sugars as acceptor substrate for the recombinant enzyme, while α-glucose-1-phosphate served as donor. d- and l-arabinose, d- and l-arabitol, and xylitol showed the highest production of transglucosylation products. The investigated disaccharides and trisaccharides were not suitable as acceptors. The structure of the transglucosylation product obtained with d-arabinose as acceptor was elucidated by NMR. The structure of the synthesized non-reducing dimer was α-Glcp(1→1)β-Araf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden Tl, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Birnberg PR, Brenner ML (1984) A one-step enzymatic assay for sucrose with sucrose phosphorylase. Anal Biochem 142:556–561

    CAS  PubMed  Google Scholar 

  • Bock K, Thøgersen N (1982) Nuclear magnetic resonance spectroscopy in the study of mono- and oligosaccharides . Annu Rep NMR Spectrosc 13:1–57

    CAS  Google Scholar 

  • Bock K, Pedersen C, Pedersen H (1984) Carbon-13 nuclear magnetic resonance data for oligosaccharides. Adv Carbohydr Chem Biochem 42:193–225

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principal of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Derensy-Dron D, Krzewinski F, Brassart C, Bouquelet S (1999) β-1,3-Galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082: characterization, partial purification and relation to mucin degradation. Biotechnol Appl Biochem 29:3–10

    CAS  PubMed  Google Scholar 

  • Doudoroff M, Barker HA, Hassid WZ (1947a) Studies with bacterial sucrose phosphorylase I. The mechanism of action of sucrose phosphorylase as a glucose-transferring enzyme (transglucosidase). J Biol Chem 168:725–732

    CAS  Google Scholar 

  • Doudoroff M, Hassid WZ, Barker HA (1947b) Studies with bacterial sucrose phosphorylase II. Enzymatic synthesis of a new reducing and of a new non-reducing disaccharide. J Biol Chem 168:733–746

    CAS  Google Scholar 

  • Farkas E, Thiem J, Krzewinski F, Bouquelet (2000) Enzymatic synthesis of Galβ1→3GlcNAc derivatives utilising a phosphorylase from Bifidobacterium bifidum 20082. Synth Lett 5:728–730

    Google Scholar 

  • Ferretti JJ, Huang TT, Russell RRB (1988) Sequence analysis of the glucosyltransferase A gene (gftA) from Streptococcus mutans Ingbritt. Infect Immun 56:1585–1588

    CAS  PubMed  Google Scholar 

  • Fournier P, Ruffray P de, Otten L (1994) Natural instability of Agrobacterium vitis Ti plasmid due to unusual duplication of a 2.3-kb DNA fragment. Mol Plant Microbe Interact 7:164–172

    CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Gottschalk A (1950) Principles underlying enzyme specificity in the domain of carbohydrates. Adv Carbohydr Chem 5:49–78

    CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  PubMed  Google Scholar 

  • Holmes EW (1997) Coupled enzymatic assay for the determination of sucrose. Anal Biochem 244:103–109

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa M, Schnaar RL, Ichikawa Y (1995) Application of sucrose phosphorylase reaction in one-pot enzymatic galactosylation: scavenger of phosphate and generation of glucose-1-phosphate in situ. Tetrahedron Lett 36:8731–8732

    Article  CAS  Google Scholar 

  • Kabel MA, Kortenhoeven L, Schols HA, Voragen AGJ (2003) In vitro fermentability of differently substituted xylo-oligosaccharides. J Agric Food Chem 50:6205–6210

    Google Scholar 

  • Kagan BO, Latker SN, Zfasman EM (1942) Phosphorolysis of saccharose by cultures of Leuconostoc mesenteroides. Biokhimiya 7:93–108

    CAS  Google Scholar 

  • Kawasaki H, Nakamura N, Ohmori M, Amari K, Sakai T (1996a) Screening for bacteria producing sucrose phosphorylase and characterization of the enzymes. Biosci Biotechnol Biochem 60:319–321

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Nakamura N, Ohmori M, Sakai T (1996b) Cloning and expression in Escherichia coli of sucrose phosphorylase gene from Leuconostoc mesenteroides No. 165. Biosci Biotechnol Biochem 60:322–324

    CAS  PubMed  Google Scholar 

  • Kitao S, Nakano E (1992) Cloning of the sucrose phosphorylase gene from Leuconostoc mesenteroides and its overexpression using a ‘sleeper’ bacteriophage vector. J Ferment Bioeng 73:179–184

    Google Scholar 

  • Kitao S, Sekine H (1992) Transglucosylation catalyzed by sucrose phosphorylase from Leuconostoc mesenteroides and production of glucosyl-xylitol. Biosci Biotechnol Biochem 56:2011–2014

    CAS  Google Scholar 

  • Kitao S, Sekine H (1994a) α-d-Glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutin. Biosci Biotechnol Biochem 58:38–42

    CAS  Google Scholar 

  • Kitao S, Sekine H (1994b) Syntheses of two kojic acid glucosides with sucrose phosphorylase from Leuconostoc mesenteroides. Biosci Biotechnol Biochem 58:419–420

    CAS  Google Scholar 

  • Kitao S, Ariga T, Matsudo T, Sekine H (1993) The syntheses of catechin-glucosides by transglycosylation with Leuconostoc mesenteroides sucrose phosphorylase. Biosci Biotechnol Biochem 57:2010–2015

    CAS  Google Scholar 

  • Kitao S, Yoshida S, Horiuchi T, Sekine H, Kusakabe I (1994) Formation of kojibiose and nigerose by sucrose phosphorylase. Biosci Biotechnol Biochem 58:790–791

    CAS  Google Scholar 

  • Kitao S, Matsudo T, Saitoh M, Horiuchi T, Sekine H (1995) Enzymatic syntheses of two stable (−)-epigallocatechin gallate-glucosides by sucrose phosphorylase. Biosci Biotechnol Biochem 59:2167–2169

    CAS  Google Scholar 

  • Kitao S, Matsudo T, Sasaki T, Koga T, Kawamura M (2000) Enzymatic synthesis of stable, odorless, and powdered furanone glucosides by sucrose phosphorylase. Biosci Biotechnol Biochem 64:134–141

    CAS  PubMed  Google Scholar 

  • Kitaoka M, Hayashi K (2002) Carbohydrate-processing phosphorolytic enzymes. Trends Glycosci Glycobiol 14:35–50

    CAS  Google Scholar 

  • Koga T, Nakamura K, Shirokane Y, Mizusawa K, Kitao S, Kikuchi M (1991) Purification and some properties of sucrose phosphorylase from Leuconostoc mesenteroides. Agric Biol Chem 55:1805–1810

    CAS  PubMed  Google Scholar 

  • Kogure M, Mori H, Ariki H, Kojima C, Yamamoto H (1997) Determination of sucrose using phosphorylase in a flow-injection system. Anal Chim Acta 337:107–111

    Article  CAS  Google Scholar 

  • Maestre E, Katakis I, Domínguez E (2001) Amperometric flow-injection determination of sucrose with a mediated tri-enzyme electrode based on sucrose phosphorylase and electrocatalytic oxidation of NADH. Biosens Bioelectron 16:61–86

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu K, Onodera S, Kikuchi M, Shiomi N (1993) Purification and some properties of β-fructofuranosidase from Bifidobacterium adolescentis G1. Biosci Biotechnol Biochem 57:1681–1685

    CAS  Google Scholar 

  • Park JK, Keyhani NO, Roseman S (2000) Chitin catabolism in the marine bacterium Vibrio furnisii. J Biol Chem 275:33077–33083

    Article  CAS  PubMed  Google Scholar 

  • Russel RRB, Mukasa H, Shimamura A, Ferretti JJ (1988) Streptococcus mutans gtfA gene specifies sucrose phosphorylase. Infect Immun 56:2763–2765

    PubMed  Google Scholar 

  • Silverstein R, Voet J, Reed D, Abeles RH (1967) Purification and mechanism of action of sucrose phosphorylase. J Biol Chem 242:1338–1346

    CAS  PubMed  Google Scholar 

  • Sprogøe D, Van den Broek LAM, Mirza O, Kastrup JS, Voragen AGJ, Gajhede M, Skov LK (2004) Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis. Biochemistry. (in press)

  • Tedokon M, Suzuki K, Kayamori Y, Fujita S, Katayama Y (1992) Enzymatic assay of inorganic phosphate with use of sucrose phosphorylase and phosphoglucomutase. Clin Chem 38:512–515

    CAS  PubMed  Google Scholar 

  • Trindade MI, Abratt VR, Reid SJ (2003) Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose. Appl Environ Microbiol 69:24–32

    Article  CAS  PubMed  Google Scholar 

  • Van den Broek LAM, Ton J, Verdoes JC, Van Laere KMJ, Voragen AGJ, Beldman G (1999) Synthesis of α-galacto-oligosaccharides by a cloned α-galactosidase from Bifidobacterium adolescentis. Biotechnol Lett 21:441–445

    Google Scholar 

  • Van den Broek LAM, Struijs K, Verdoes JC, Beldman G, Voragen AGJ (2003) Cloning and characterization of two α-glucosidases from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 61:55–60

    PubMed  Google Scholar 

  • Van Laere KMJ, Hartemink R, Beldman G, Pitson S, Dijkema C, Schols HA, Voragen AGJ (1999) Hydrolase and transgalactosylation activity of Bifidobacterium adolescentis α-galactosidase. Appl Microbiol Biotechnol 52:681–688

    PubMed  Google Scholar 

  • Van Laere KMJ, Hartemink R, Bosveld M, Schols HA, Voragen AGJ (2000) Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J Agric Food Sci 48:1644–1652

    Article  Google Scholar 

  • Verhoef R, Waard P de, Schols HA, Rättö M, Siika-aho M, Voragen AGJ (2002) Structural elucidation of the EPS of slime producing Brevundimonas vesicularis sp. isolated from a paper machine. Carbohydr Res 337:1821–1831

    Article  CAS  PubMed  Google Scholar 

  • Weimberg R, Doudoroff M (1953) Studies with three bacterial sucrose phosphorylases. J Bacteriol 68:381–388

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. J. Voragen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Broek, L.A.M., van Boxtel, E.L., Kievit, R.P. et al. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 65, 219–227 (2004). https://doi.org/10.1007/s00253-003-1534-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1534-x

Keywords

Navigation