Skip to main content
Log in

A Rapid and Reliable Method for Total Protein Extraction from Succulent Plants for Proteomic Analysis

  • Published:
The Protein Journal Aims and scope Submit manuscript

An Erratum to this article was published on 19 October 2017

This article has been updated

Abstract

Crassulacean acid metabolism plants have some morphological features, such as succulent and reduced leaves, thick cuticles, and sunken stomata that help them prevent excessive water loss and irradiation. As molecular constituents of these morphological adaptations to xeric environments, succulent plants produce a set of specific compounds such as complex polysaccharides, pigments, waxes, and terpenoids, to name a few, in addition to uncharacterized proteases. Since all these compounds interfere with the analysis of proteins by electrophoretic techniques, preparation of high quality samples from these sources represents a real challenge. The absence of adequate protocols for protein extraction has restrained the study of this class of plants at the molecular level. Here, we present a rapid and reliable protocol that could be accomplished in 1 h and applied to a broad range of plants with reproducible results. We were able to obtain well-resolved SDS/PAGE protein patterns in extracts from different members of the subfamilies Agavoideae (Agave, Yucca, Manfreda, and Furcraea), Nolinoideae (Dasylirion and Beucarnea), and the Cactaceae family. This method is based on the differential solubility of contaminants and proteins in the presence of acetone and pH-altered solutions. We speculate about the role of saponins and high molecular weight carbohydrates to produce electrophoretic-compatible samples. A modification of the basic protocol allowed the analysis of samples by bidimensional electrophoresis (2DE) for proteomic analysis. Furostanol glycoside 26-O-β-glucosidase (an enzyme involved in steroid saponin synthesis) was successfully identified by mass spectrometry analysis and de novo sequencing of a 2DE spot from an Agave attenuata sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 19 October 2017

    The original version of this article unfortunately contains a mistake. The authors have inadvertently incorrectly listed the concentration of TCA in the acetone/TCA/β-ME solution in the materials and methods section of this paper. The TCA concentration in Sects. 2.3.2 and 2.3.5 should be 10% TCA, making the solution acetone/10% TCA/0.07% β-ME. It is now corrected with this erratum.

Abbreviations

2DE:

Bidimensional electrophoresis

CAM:

Crassulacean acid metabolism

TCA:

Trichloroacetic acid

β-ME:

β-mercaptoethanol

PMSF:

Phenylmethylsulfonyl fluoride

References

  1. Keeley JE, Rundel PW (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci 164(3 Suppl):S55–S77

    Article  CAS  Google Scholar 

  2. Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119(1–2):101–117

    Article  CAS  Google Scholar 

  3. Nobel P (1996) High productivities of certain agronomic CAM species. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Springer, Berlin, pp 255–265

    Chapter  Google Scholar 

  4. García-Mendoza A, Galván VR (1995) Riqueza de las familias Agavaceae y Nolinaceae en México. Bol Soc Bot México 56:7–24

    Google Scholar 

  5. Good-Avila SV, Souza V, Gaut BS, Eguiarte LE (2006) Timing and rate of speciation in Agave (Agavaceae). Proc Natl Acad Sci USA 103:9124–9129

    Article  CAS  Google Scholar 

  6. Davis AS, Dohleman F, Long SP (2011) The global potential for Agave as a biofuel feedstock. GCB Bioenergy 3:68–78

    Article  CAS  Google Scholar 

  7. Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  CAS  Google Scholar 

  8. Monterrosas-Brisson N, Arenas Ocampo ML, Jiménez-Ferrer E, Jiménez-Aparicio AR, Zamilpa A, Gonzalez-Cortazar M, Tortoriello J, Herrera-Ruiz M (2013) Anti-inflammatory activity of different Agave plants and the compound cantalasaponin-1. Molecules 18:8136–8146

    Article  CAS  Google Scholar 

  9. Ahumada-Santosa YP, Montes-Avila J, Uribe-Beltrána M, Díaz-Camachoa SP, López-Angulo G, Rito Vega-Aviña R, López-Valenzuela JA, Heredia JB, Delgado-Vargas F (2013) Chemical characterization, antioxidant and antibacterial activities of six Agave species from Sinaloa, México. Ind Crops Prod 49:143–149

    Article  Google Scholar 

  10. Kee SC, Nobel PS (1986) Concomitant changes in high temperature tolerance and heat-shock proteins in desert succulents. Plant Physiol 80:596–598

    Article  CAS  Google Scholar 

  11. Nobel PS, Smith SD (1983) High and low temperature tolerances and their relationships to distribution of agaves. Plant Cell Environ 6:711–719

    Google Scholar 

  12. González-Cruz L, Jaramillo-Flores ME, Bernardino-Nicanor Mora-Escobedo R (2011) Influence of plant age on fructan content and fructosyltranserase activity in Agave atrovirens Karw leaves. Afr J Biotechnol 10:15911–15920

    Google Scholar 

  13. Mellado-Mojica E, López MG (2012) Fructan metabolism in A. tequilana Weber blue variety along its developmental cycle in the field. J Agric Food Chem 60:11704–11713

    Article  CAS  Google Scholar 

  14. Nobel PS (1976) Water relations and photosynthesis of a desert CAM plant Agave deserti. Plant Physiol 58:576–582

    Article  CAS  Google Scholar 

  15. Gentry HS (1982) Agaves of continental North America. University of Arizona Press, Tucson

    Google Scholar 

  16. Wattendorff J, Holloway PJ (1980) Studies on the ultrastructure and histochemistry of plant cuticles: the cuticular membrane of Agave americana L. in situ. Ann Bot 46:13–28

    Article  CAS  Google Scholar 

  17. North GB, Brinton EK, Garrett TY (2008) Contractile roots in succulent monocots: convergence, divergence and adaptation to limited rainfall. Plant Cell Environ 31:1179–1189

    Article  Google Scholar 

  18. Luján R, Lledías F, Martínez LM, Barreto R, Cassab G, Nieto-Sotelo J (2009) Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var Weber. Plant Cell Environ 32:1791–1803

    Article  Google Scholar 

  19. Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507

    Article  CAS  Google Scholar 

  20. Wang W, Tai F, Chen S (2008) Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J Sep Sci 31:2032–2039

    Article  CAS  Google Scholar 

  21. Marker RE, López J (1947) Biogenesis of the steroidal sapogenins in Agave, Manfreda and Hesperaloe. J Am Chem Soc 69:2403–2404

    Article  CAS  Google Scholar 

  22. Tipton KF (1964) Agavain: a new plant proteinase. Biochim Biophys Acta 92:341–350

    CAS  Google Scholar 

  23. Srinivasan M, Bratia IS (1953) The Carbohydrates of Agave vera cruz. Mill Biochem 55:286–289

    Article  CAS  Google Scholar 

  24. Du Toit PJ (1976) Isolation and partial characterization of a protease from Agave americana variegata. BBA-Enzymol 429:895–911

    CAS  Google Scholar 

  25. Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220:183–197

    Article  CAS  Google Scholar 

  26. Damerval C, de Vienne D, Zivy M, Thiellement H (1986) The technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  27. Martínez-García JF, Monte E, Quail PH (1999) A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J 20(2):251–257

    Article  Google Scholar 

  28. Isaacson T, Damasceno CMB, Saravanan RS, He Y, Catalá C, Saladié M, Rose JKC (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774

    Article  CAS  Google Scholar 

  29. Wei W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  Google Scholar 

  30. Dubravko Pavoković D, Križnik B, Krsnik-Rasol M (2012) Evaluation of protein extraction methods for proteomic analysis of non-model recalcitrant plant tissues. Croat Chem Acta 85:177–183

    Article  Google Scholar 

  31. Charney J, Tomarelli RM (1947) A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171:501–505

    CAS  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  33. Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and co-polymerized substrates. Anal Biochem 102:196–202

    Article  CAS  Google Scholar 

  34. Shapiro AL, Viñuela E, Maizel JV (1967) Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 28:815–20

    Article  CAS  Google Scholar 

  35. Horvath A, Riezman H (1994) Rapid protein extraction from Saccharomyces cerevisiae. Yeast 10:1305–1310

    Article  CAS  Google Scholar 

  36. Balen B, Krsnik-Rasol M, Zadro I, Simeon-Rudolph V (2004) Esterase activity and isoenzymes in relation to morphogenesis in Mammillaria gracillis Pfeiff tissue culture. Acta Bot Croat 63:83–91

    CAS  Google Scholar 

  37. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    Google Scholar 

  38. Rajalingam D, Loftis C, Xu JJ, Kumar TKS (2009) Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Sci 18:980–993

    Article  CAS  Google Scholar 

  39. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  40. Blum H, Beier H, Gross HJ (1986) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  Google Scholar 

  41. Makkar H, Sharma O, Negi S (1980) Assay of proteins by Lowry’s method in the presence of high concentrations of beta-mercaptoethanol. Anal Biochem 104:124–116

    Article  CAS  Google Scholar 

  42. Gross S, Martin JA, Simpson J, Abraham-Juarez MJ, Wang Z, Visel A (2013) De novo transcriptome assembly of drought tolerant CAM plants Agave deserti and Agave tequilana. BMC Genom 14:563

    Article  CAS  Google Scholar 

  43. Reimerdes EH, Klostermeyer H (1976) Determination of proteolytic activities on casein substrates. Method Enzymol 45:26–28

    Article  CAS  Google Scholar 

  44. Dufield DR, Wilson GS, Glass RS, Schöneich (2004) Selective site-specific Fenton oxidation of methionine in model peptides: evidence for a metal-bound oxidant. J Pharm Sci 93:1122–1130

    Article  CAS  Google Scholar 

  45. Guerrero C, Martín-Rufián M, Reina JJ, Heredia (2006) Isolation and characterization of a cDNA encoding a membrane bound acyl-CoA binding protein from Agave americana L epidermis. Plant Physiol Biochem 44:85–90

    Article  CAS  Google Scholar 

  46. Casas-Godoy L a, Arrizon J, Arrieta-Baez D, Plou FJ, Sandoval G (2016) Synthesis and emulsifying properties of carbohydrate fatty acid esters produced from Agave tequilana fructans by enzymatic acylation. Food Chem 204:437–443

    Article  CAS  Google Scholar 

  47. Eskander J, Catherine L, Harakat D (2011) Steroidal saponins from the leaves of Beaucarnea recurvata. Phytochemistry 72:946–951

    Article  CAS  Google Scholar 

  48. Amid M, Yazid M, Manap ABD, Zohdi NK (2014) Purification and characterization of alkaline-thermostable protease enzyme from pitaya (Hylocereus polyrhizus) waste: a potential low cost of the enzyme. BioMed Res Int 2014:1–8

    Article  Google Scholar 

  49. Perez-Pimienta JA, Flores-Gómez CA, Ruiz HA, Sathitsuksanoh N, Balan N, da Costa Sousa L, Dale BE, Singh S, Simmons BA (2016) Evaluation of agave bagasse recalcitrance using AFEX™, autohydrolysis, and ionic liquid pretreatments. Bioresource Technol 211:216–223

    Article  CAS  Google Scholar 

  50. Kilcoyne M, Gerlach JQ, Farrell MP, Bhavanandan VP, Joshi L (2011) Periodic acid–Schiff’s reagent assay for carbohydrates in a microtiter plate format. Anal Biochem 416:18–26

    Article  CAS  Google Scholar 

  51. Ku Y, Jansen O, Oles CJ, Lazar EZ, Rader JI (2003) Precipitation of inulins and oligoglucoses by ethanol and other solvents. Food Chem 81:125–132

    Article  CAS  Google Scholar 

  52. Puzstai A (1966) Interactions of proteins with other polyelectrolytes on a two-phase system containing phenol and aqueous buffer at various pH values. Biochem J 99:93–101

    Article  Google Scholar 

  53. Pinos-Rodríguez JM, Zamudio M, González SS (2008) The effect of plant age on the chemical composition of fresh and ensiled Agave salmiana leaves. S Afr J Anim Sci 38:43–50

    Article  Google Scholar 

  54. Potter S, Jimenez-Flores R, Pollack J, Timothy A, Lone TA, Berber-Jimenez MD (1993) Protein-saponin interaction and its influence on blood lipids. J Agric Food Chem 41:1287–1291

    Article  CAS  Google Scholar 

  55. Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Brit J Nutr 88:587–605

    Article  CAS  Google Scholar 

  56. Shimoyada M, Ootsubo R, Naruse T, Watanabe K (2000) Soybean saponin on protease hydrolyses of β-lactoglobulin and α-lactalbumin. Biosci Biotechnol Biochem 64:891–893

    Article  Google Scholar 

  57. Liu PJ, Chena Q, Wu SS, Shen J, Lin SC (2010) Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J Membr Sci 350:387–394

    Article  CAS  Google Scholar 

  58. Kaya M, Mulerčikas P, Sargin I, Kazlauskaitė S, Baublys V, Akyuz B, Bulut E, Tubelyté V (2016) Three-dimensional chitin rings from body segments of a pet diplopod species: Characterization and protein interaction studies. Mater Sci Eng C 68:716–22

    Article  CAS  Google Scholar 

  59. Inoue K, Shibuya M, Yamamoto K, Ebizuka Y (1996) Molecular cloning and bacterial expression of a cDNA encoding furostanol glycoside 26-O-β-glucosidase of Costus speciosus. FEBS Lett 389:273–277

    Article  CAS  Google Scholar 

  60. Kohara A, Nakajima C, Hashimoto K, Ikenaga T, Tanaka H, Shoyama Y, Yoshida S, Muranaka T (2005) A novel glucosyltransferase involved in steroid saponin biosynthesis in Solanum aculeatissimum. Plant Mol Biol 57:225–239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Salvador Arias from Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México for providing O. ficus-indica, L.marginatus, and M. magnimamma samples. We also thank Unidad de Proteómica and Unidad Universitaria de Apoyo Bioinformático, Instituto de Biotecnología, Universidad Nacional Autónoma de México for all mass spectrometry analysis and the production of our local Agave fasta database, respectively. This work was supported by research grants from PAPIIT/DGAPA/UNAM IN212116 (F Lledías) and IG200515 (J Nieto-Sotelo and G Cassab), UNAM-Allied/Domecq P-150 (J Nieto-Sotelo and G Cassab), and CONACyT PN-247732 (J Nieto-Sotelo and G Cassab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Nieto-Sotelo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human participants and animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10930-017-9739-5.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 801 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lledías, F., Hernández, F., Rivas, V. et al. A Rapid and Reliable Method for Total Protein Extraction from Succulent Plants for Proteomic Analysis. Protein J 36, 308–321 (2017). https://doi.org/10.1007/s10930-017-9720-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9720-3

Keywords

Navigation