Skip to main content
Log in

A New Structure-based Classification of Gram-positive Bacteriocins

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Bacteriocins are ribosomally-synthesized peptides or proteins produced by a wide range of bacteria. The antimicrobial activity of this group of natural substances against foodborne pathogenic and spoilage bacteria has raised considerable interest for their application in food preservation. Classifying these bacteriocins in well defined classes according to their biochemical properties is a major step towards characterizing these anti-infective peptides and understanding their mode of action. Actually, the chosen criteria for bacteriocins’ classification lack consistency and coherence. So, various classification schemes of bacteriocins resulted various levels of contradiction and sorting inefficiencies leading to bacteriocins belonging to more than one class at the same time and to a general lack of classification of many bacteriocins. Establishing a coherent and adequate classification scheme for these bacteriocins is sought after by several researchers in the field. It is not straightforward to formulate an efficient classification scheme that encompasses all of the existing bacteriocins. In the light of the structural data, here we revisit the previously proposed contradictory classification and we define new structure-based sequence fingerprints that support a subdivision of the bacteriocins into 12 groups. The paper lays down a resourceful and consistent classification approach that resulted in classifying more than 70% of bacteriocins known to date and with potential to identify distinct classes for the remaining unclassified bacteriocins. Identified groups are characterized by the presence of highly conserved short amino acid motifs. Furthermore, unclassified bacteriocins are expected to form an identified group when there will be sufficient sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DNA:

Desoxyribonucleic acid

HMMs:

Hidden Markov Models

MEME:

Multiple EM for Motif Elicitation

NJ:

Neighbor-Joining method

PDB:

Protein Data Bank

RCSB:

Research Structural Bioinformatics

SciDBMaker:

Scientific DataBase Maker

References

  1. Axelsson L, Holck A (1995) J Bacteriol 177:2125–2137

    CAS  Google Scholar 

  2. Bailey TL, Gribskov BM (1997) J Comput Biol 4:45–59

    Article  CAS  Google Scholar 

  3. Cintas LM, Casaus MP, Herranz C, Nes IF, Hermandez PE (2001) Food Sci Tech Int 7:281–305

    CAS  Google Scholar 

  4. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Int J Food Microbiol 71:1–20

    Article  CAS  Google Scholar 

  5. Cotter PD, Hill C, Ross RP (2005) Curr Prot Pept Sci 6:61–75

    Article  CAS  Google Scholar 

  6. De Vos WM, Mulders JWM, Siezen RJ, Hugenholtz J, Kuipers O (1993) Appl Environ Microbiol 59:213–218

    Google Scholar 

  7. Diep DB, Nes IF (2002) Current Drug Targets 3:107–122

    Article  CAS  Google Scholar 

  8. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) Microbiol Mol Biol Rev 70(2):564–582

    Article  CAS  Google Scholar 

  9. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Cambridge University Press: Cambridge

  10. Eijsink VGH, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF (2002) Antonie Van Leeuwenhoek 81:639–654

    Article  CAS  Google Scholar 

  11. Eijsink VGH, Skeie M, Middelhove H, Brurberg MB, Nes IF (1998) Appl Environ Microbiol 64:3275–3281

    CAS  Google Scholar 

  12. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) FEMS Microbiol Rev 24:85–106

    Article  CAS  Google Scholar 

  13. Ennahar S, Deschamps N, Richard J (2000) Current Microbiol 41:1–4

    Article  CAS  Google Scholar 

  14. Felsenstein J (1995) PHYLIP (Phylogeny Inference Package) version 3.57c

  15. Hammami R, Zouhir A, Ben Hamida J, Fliss I (2007) BMC Microbiol 7:8–9

    Article  Google Scholar 

  16. Hammami R, Zouhir A, Naghmouchi K, Ben Hamida J, Fliss I (2008) BMC Bioinform 9:121

    Article  Google Scholar 

  17. Jack RW, Tagg JR, Ray B (1995) Microbiol Rev 59:171–200

    CAS  Google Scholar 

  18. Kaiser AL, Montville TJ (1996) Appl Environ Microbiol 62:4529–4535

    CAS  Google Scholar 

  19. Klaenhammer TR (1993) FEMS Microbiol Rev 12:39–86

    CAS  Google Scholar 

  20. Larsen AG, Vogensen FK, Josephsen J (1993) J Appl Bacteriol 75:113–122

    CAS  Google Scholar 

  21. Moll GN (1999) Konings WN. Driessen AJM 76:185–198

    CAS  Google Scholar 

  22. Nes IF, Holo H (2000) Biopolymers 55:50–61

    Article  CAS  Google Scholar 

  23. Nes IF, Diep DB, Hâvarstein LS, Brurberg MB (1996) Antonie Van Leeuwenhoek 701:113–128

    Article  Google Scholar 

  24. Nicholas CK, Heng Phlip A, Wescombe Jermy P, Burton Ralph W, Jack John R, Tagg (2007) Riley MA, Chavan MA (ed). Springer, Berlin

  25. Nissen-Meyer J, Rogne P, Oppegård C, Haugen HS, Kristiansen PE (2009) Curr Pharm Biotechnol 10:19–37

    Article  CAS  Google Scholar 

  26. Pridmore D, Rekhif N, Pittet AC, Suri B, Mollet B (1996) Appl Environ Microbiol 62:1799–1802

    CAS  Google Scholar 

  27. Sahl HG, Jack RW, Bierbaum G (1995) Eur J Biochem 230:827–853

    Article  CAS  Google Scholar 

  28. Tagg JR, Adnan AS, Wanna-Maker LW (1976) Bacteriol Rev 40:722–756

    CAS  Google Scholar 

  29. Tomita T, Kamio Y (1997) Biosci Biotechnol Biochem 61:565–572

    Article  CAS  Google Scholar 

  30. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  31. Van Belkum MJ, Stiles ME (2000) Nat Pro Rep 17:323–335

    Article  Google Scholar 

  32. Vignolo G, Fadda S, Kairuz MN, Holgado AAR, Oliver G (1996) Int J Food Microbiol 29:397–402

    Article  CAS  Google Scholar 

  33. Zheng G, Slavik MF (1999) Lett Appl Microbiol 28:363–367

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Nefzi Adel and Dr. Sadok Mokthar for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmajid Zouhir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zouhir, A., Hammami, R., Fliss, I. et al. A New Structure-based Classification of Gram-positive Bacteriocins. Protein J 29, 432–439 (2010). https://doi.org/10.1007/s10930-010-9270-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9270-4

Keywords

Navigation