Skip to main content
Log in

A Statistical Mechanical Deconvolution of the Differential Scanning Calorimetric Profiles of the Thermal Denaturation of Cyanomethemoglobin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A differential scanning calorimetric study of the thermal unfolding of horse cyanomethemoglobin (as an irreversible protein system) was carried out in phosphate-EDTA buffer (20 mM phosphate, 1 mM EDTA) pH 7.2. The calorimetric rescanning of the protein solution was found to be irreversible and the process unfolded statefinal state appears to follow first order kinetic. Assuming the system to be comprised of n reversible states and one irreversible final state, the number of particles participating in the reversible states changes with time because they ultimately transit to the final irreversible denatured state. Hence, we carried out the deconvolution analysis using the grand canonical ensembles instead of just the canonical ensembles. This change was effected by introducing a correction term into the related equations which determines the outlet share of those particles exiting from the reversible states and converting into the final irreversible state. This approach provided an improved interpretation of the experimental data, which supports the following two-step process for the thermal denaturation of cyanomethemoglobin: α2β2 → (α + αβ + β)excited → αmelt + (αβ)melt + (βmelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΔHm:

melting enthalpy

Cp:

heat capacity at constant pressure

DSC:

differential scanning calorimetry

EDTA:

ethylenedinitrilo tetraacetic acid

K:

degree of Kelvin

r.p.m.:

round per minute

T m :

melting temperature

w/v:

weight per volume

References

  • K. C. Cho C. L. Choy (1980) Biochim. Biophys. Acta 622 320–330 Occurrence Handle7378458

    PubMed  Google Scholar 

  • V. Edge N. M. Allewell J. M. Sturtevant (1985) Biochemistry 24 5899–5906 Occurrence Handle10.1021/bi00342a032 Occurrence Handle3910085

    Article  PubMed  Google Scholar 

  • E. Freire R. L. Biltonen (1978) Biopolymers 17 463–479 Occurrence Handle10.1002/bip.1978.360170212

    Article  Google Scholar 

  • S. Fujita N. Go K. Imahori (1979) Biochemistry 18 24–28 Occurrence Handle10.1021/bi00568a004 Occurrence Handle420776

    Article  PubMed  Google Scholar 

  • H. Fukada K. Takahashi J. M. Sturtevant (1987) Biochemistry 26 4063–4068 Occurrence Handle10.1021/bi00387a048 Occurrence Handle3498514

    Article  PubMed  Google Scholar 

  • C. Ghelis J. Yon (1982) Protein Folding Academic Press New York

    Google Scholar 

  • C. O. Hu J. M. Sturtevant (1987) Biochemistry 26 178–182 Occurrence Handle10.1021/bi00375a025 Occurrence Handle3548815

    Article  PubMed  Google Scholar 

  • S. I. Kidokoro A. Wada (1987) Biopolymers 26 213–229 Occurrence Handle10.1002/bip.360260205

    Article  Google Scholar 

  • S. Lapanje (1978) Physiological Aspects of Protein Denaturation John Wiley & Sons New York

    Google Scholar 

  • R. Lumry E. Eyring (1954) J. Phys. Chem. 58 110–120 Occurrence Handle10.1021/j150512a005

    Article  Google Scholar 

  • A. E. Lyubarev B. I. Kurganov V. N. Orlov H. M. Zhou (1999) Biophys. Chem. 79 199–204 Occurrence Handle10.1016/S0301-4622(99)00050-2 Occurrence Handle10443013

    Article  PubMed  Google Scholar 

  • S. P. Manly K. S. Matthews J. M. Sturtevant (1985) Biochemistry 24 3842–3846 Occurrence Handle10.1021/bi00336a004 Occurrence Handle3902076

    Article  PubMed  Google Scholar 

  • L. V. Medved E. I. Tiktopulo P. L. Privalov G. V. Varetskaia (1980) Mol. Biol. (Mosk) 14 835–842

    Google Scholar 

  • N. T. Mrabet J. R. Shaeffer M. J. McDonald H. F. Bunn (1986) J. Biol.Chem. 261 1111–1115 Occurrence Handle2418013

    PubMed  Google Scholar 

  • T. Nakagava H. Shimizu K. Link S. Koide A. Tamura (2002) J. Mol. Biol. 323 751–762 Occurrence Handle10.1016/S0022-2836(02)00974-9 Occurrence Handle12419262

    Article  PubMed  Google Scholar 

  • V. V. Novokhatny S. A. Kudinov P. L. Privalov (1984) J. Mol. Biol. 179 215–232 Occurrence Handle10.1016/0022-2836(84)90466-2 Occurrence Handle6502712

    Article  PubMed  Google Scholar 

  • S. A. Potekhin P. L. Privalov (1982) J. Mol. Biol. 159 519–535 Occurrence Handle10.1016/0022-2836(82)90299-6 Occurrence Handle7166753

    Article  PubMed  Google Scholar 

  • P. L. Privalov (1982.) Adv. Protein Chem. 35 1–104 Occurrence Handle6762066

    PubMed  Google Scholar 

  • P. L. Privalov L. V. Medved (1982) J. Mol. Biol. 159 665–683 Occurrence Handle10.1016/0022-2836(82)90107-3 Occurrence Handle7143446

    Article  PubMed  Google Scholar 

  • P. L. Privalov P. L. Mateo N. N. Khechinashvili V. M. Stepanov L. P. Revina (1981) J. Mol. Biol. 152 445–464 Occurrence Handle10.1016/0022-2836(81)90253-9 Occurrence Handle6799654

    Article  PubMed  Google Scholar 

  • C. W. Rigell C. de Saussure E. Freire (1985) Biochemistry 24 5638–5646 Occurrence Handle10.1021/bi00341a053 Occurrence Handle3000433

    Article  PubMed  Google Scholar 

  • J. M. Sanchez-Ruiz (1992.) Biophys. J. 61 921–935

    Google Scholar 

  • N. Singh Z. Liu H. F. Fisher (1996) Biophys. Chem. 63 27–36 Occurrence Handle10.1016/S0301-4622(96)02192-8 Occurrence Handle8981749

    Article  PubMed  Google Scholar 

  • K. Takahashi J. M. Sturtevant (1981) Biochemistry 20 6185–6190 Occurrence Handle10.1021/bi00524a042 Occurrence Handle7030385

    Article  PubMed  Google Scholar 

  • C. Tanford (1968.) Adv. Protein Chem. 23 121–282 Occurrence Handle4882248

    PubMed  Google Scholar 

  • C. Tanford (1970.) Adv. Protein Chem. 24 1–95 Occurrence Handle4912353

    PubMed  Google Scholar 

  • T. N. Tsalkova P. L. Privalov (1985) J. Mol. Biol. 181 533–544 Occurrence Handle10.1016/0022-2836(85)90425-5 Occurrence Handle3999139

    Article  PubMed  Google Scholar 

  • R. C. Williams K. Y. Tsay (1973) Anal. Biochem. 54 137–145 Occurrence Handle10.1016/0003-2697(73)90256-X Occurrence Handle4725657

    Article  PubMed  Google Scholar 

  • T. Yamaguchi J. Pang K. S. Reddy H. E. Witkowska S. Surrey K. Adachi (1996) J. Biol. Chem. 271 26677–26683 Occurrence Handle10.1074/jbc.271.43.26677 Occurrence Handle8900144

    Article  PubMed  Google Scholar 

  • T. Yang K. W. Olsen (1988) Arch. Biochem. Biophys. 261 283–290 Occurrence Handle10.1016/0003-9861(88)90343-8 Occurrence Handle3355152

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrokh Safarian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safarian, S., Alimohammadi, M., Saberi, A. et al. A Statistical Mechanical Deconvolution of the Differential Scanning Calorimetric Profiles of the Thermal Denaturation of Cyanomethemoglobin. Protein J 24, 175–181 (2005). https://doi.org/10.1007/s10930-005-7841-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-005-7841-6

Key words:

Navigation