Skip to main content
Log in

Towards a comprehensive assessment of QSP models: what would it take?

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Quantitative Systems Pharmacology (QSP) has emerged as a powerful ensemble of approaches aiming at developing integrated mathematical and computational models elucidating the complex interactions between pharmacology, physiology, and disease. As the field grows and matures its applications expand beyond the boundaries of research and development and slowly enter the decision making and regulatory arenas. However, widespread acceptance and eventual adoption of a new modeling approach requires assessment criteria and quantifiable metrics that establish credibility and increase confidence in model predictions. QSP aims to provide an integrated understanding of pathology in the context of therapeutic interventions. Because of its ambitious nature and the fact that QSP emerged in an uncoordinated manner as a result of activities distributed across organizations and academic institutions, high entropy characterizes the tools, methods, and computational methodologies and approaches used. The eventual acceptance of QSP model predictions as supporting material for an application to a regulatory agency will require that two key aspects are considered: (1) increase confidence in the QSP framework, which drives standardization and assessment; and (2) careful articulation of the expectations. Both rely heavily on our ability to rigorously and consistently assess QSP models. In this manuscript, we wish to discuss the meaning and purpose of such an assessment in the context of QSP model development and elaborate on the differentiating features of QSP that render such an endeavor challenging. We argue that QSP establishes a conceptual, integrative framework rather than a specific and well-defined computational methodology. QSP elicits the use of a wide variety of modeling and computational methodologies optimized with respect to specific applications and available data modalities, which exceed the data structures employed by chemometrics and PK/PD models. While the range of options fosters creativity and promises to substantially advance our ability to design pharmaceutical interventions rationally and optimally, our expectations of QSP models need to be clearly articulated and agreed on, with assessment emphasizing the scope of QSP studies rather than the methods used. Nevertheless, QSP should not be considered an independent approach, rather one of many in the broader continuum of computational models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In (Hosseini, Feigelman et al. [61]) the environment was MATLAB whereas the models were assumed to be expressed in the form of standard ODEs.

  2. https://www.fda.gov/drugs/development-resources/model-informed-drug-development-pilot-program

References

  1. Azer K, Kaddi CD, Barrett JS, Bai JPF, McQuade ST, Merrill NJ, Piccoli B, Neves-Zaph S, Marchetti L, Lombardo R, Parolo S, Immanuel SRC, Baliga NS (2021) History and future perspectives on the discipline of quantitative systems pharmacology modeling and its applications. Front Physiol 12:637999. https://doi.org/10.3389/fphys.2021.637999

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chae D (2020) Introduction to dynamical systems analysis in quantitative systems pharmacology: basic concepts and applications. Transl Clin Pharmacol 28(3):109–125. https://doi.org/10.12793/tcp.2020.28.e12

    Article  PubMed  PubMed Central  Google Scholar 

  3. Androulakis IP (2016) Quantitative systems pharmacology: a framework for context. Curr Pharmacol Rep. https://doi.org/10.1007/s40495-016-0058-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rao RT, Scherholz ML, Hartmanshenn C, Bae SA, Androulakis IP (2016) On the analysis of complex biological supply chains: from process systems engineering to quantitative systems pharmacology. Comput Chem Eng. https://doi.org/10.1016/j.compchemeng.2017.06.003

    Article  Google Scholar 

  5. Androulakis IP (2015) Systems engineering meets quantitative systems pharmacology: from low-level targets to engaging the host defenses. Wiley Interdiscip Rev Syst Biol Med 7(3):101–112. https://doi.org/10.1002/wsbm.1294

    Article  CAS  PubMed  Google Scholar 

  6. Allerheiligen S, Abernethy D, Altman RB, Brouwer K, Califano A, David Z, D'argenio, Iyengar R, Jusko W, Lalonde R, Lauffenburger D, Shoichet B, Stevens J, Sorger P, Subramaniam S, Graaf PD, Vicini P, Ward RJ (2011) Quantitative and systems pharmacology in the post-genomic era : new approaches to discovering drugs and understanding therapeutic. In: An NIH White Paper by the QSP Workshop Group.

  7. Vodovotz Y, An G, Androulakis IP (2013) A systems engineering perspective on homeostasis and disease. Front Bioeng Biotechnol 1:6. https://doi.org/10.3389/fbioe.2013.00006

    Article  PubMed  PubMed Central  Google Scholar 

  8. Danhof M (2016) Systems pharmacology—towards the modeling of network interactions. Eur J Pharm Sci 94:4–14. https://doi.org/10.1016/j.ejps.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  9. Kitano H (2010) Grand challenges in systems physiology. Front Physiol 1:3. https://doi.org/10.3389/fphys.2010.00003

    Article  PubMed  PubMed Central  Google Scholar 

  10. van der Greef J, McBurney RN (2005) Rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nat Rev Drug Discov 4(12):961–967. https://doi.org/10.1038/nrd1904

    Article  CAS  PubMed  Google Scholar 

  11. Knight-Schrijver VR, Chelliah V, Cucurull-Sanchez L, Le Novere N (2016) The promises of quantitative systems pharmacology modelling for drug development. Comput Struct Biotechnol J 14:363–370. https://doi.org/10.1016/j.csbj.2016.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scheff JD, Kamisoglu K, Androulakis IP (2016) Mechanistic modeling of inflammation. In: Mager DE, Kimko HHC (eds) Systems pharmacology and pharmacodynamics. Springer International Publishing, Cham, pp 325–352. https://doi.org/10.1007/978-3-319-44534-2_15

    Chapter  Google Scholar 

  13. Ayyar VS, Jusko W (2020) Transitioning from basic towards systems pharmacodynamic models: lessons from corticosteroids. Pharmacol Rev 72(1):25

    Google Scholar 

  14. Morrison TM, Hariharan P, Funkhouser CM, Afshari P, Goodin M, Horner M (2019) Assessing computational model credibility using a risk-based framework: application to hemolysis in centrifugal blood pumps. ASAIO J 65(4):349–360. https://doi.org/10.1097/MAT.0000000000000996

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ramanujan S, Chan JR, Friedrich CM, Thalhauser CJ (2019) A flexible approach for context-dependent assessment of quantitative systems pharmacology models. CPT Pharmacomet Syst Pharmacol 8(6):340–343. https://doi.org/10.1002/psp4.12409

    Article  CAS  Google Scholar 

  16. Gross F, MacLeod M (2017) Prospects and problems for standardizing model validation in systems biology. Prog Biophys Mol Biol 129:3–12. https://doi.org/10.1016/j.pbiomolbio.2017.01.003

    Article  PubMed  Google Scholar 

  17. Stadter P, Schalte Y, Schmiester L, Hasenauer J, Stapor PL (2021) Benchmarking of numerical integration methods for ODE models of biological systems. Sci Rep 11(1):2696. https://doi.org/10.1038/s41598-021-82196-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Degasperi A, Fey D, Kholodenko BN (2017) Performance of objective functions and optimisation procedures for parameter estimation in system biology models. NPJ Syst Biol Appl 3:20. https://doi.org/10.1038/s41540-017-0023-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mazzia F, Cash JR, Soetaert K (2012) A test set for stiff initial value problem solvers in the open source software R: package deTestSet. J Comput Appl Math 236(16):4119–4131. https://doi.org/10.1016/j.cam.2012.03.014

    Article  Google Scholar 

  20. Floudas CA, Pardalos PM, Adjiman CS, Esposito WR, Gumus ZH, Harding ST, Klepeis JL, Meyer CA, Schweiger CA (1999) Handbook of test problems in local and global optimization. Springer, Berlin. https://doi.org/10.1023/A:1008328212973

    Book  Google Scholar 

  21. Geistlinger L, Csaba G, Santarelli M, Ramos M, Schiffer L, Turaga N, Law C, Davis S, Carey V, Morgan M, Zimmer R, Waldron L (2021) Toward a gold standard for benchmarking gene set enrichment analysis. Brief Bioinform 22(1):545–556. https://doi.org/10.1093/bib/bbz158

    Article  CAS  PubMed  Google Scholar 

  22. Bouzom F, Ball K, Perdaems N, Walther B (2012) Physiologically based pharmacokinetic (PBPK) modelling tools: how to fit with our needs? Biopharm Drug Dispos 33(2):55–71. https://doi.org/10.1002/bdd.1767

    Article  CAS  PubMed  Google Scholar 

  23. Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16(2):176–185. https://doi.org/10.1023/A:1011907920641

    Article  CAS  PubMed  Google Scholar 

  24. Meibohm B, Derendorf H (1997) Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 35(10):401–413

    CAS  PubMed  Google Scholar 

  25. Agoram B (2014) Evaluating systems pharmacology models is different from evaluating standard pharmacokinetic-pharmacodynamic models. CPT Pharmacomet Syst Pharmacol 3:e101. https://doi.org/10.1038/psp.2013.77

    Article  CAS  Google Scholar 

  26. Hosseini I, Gajjala A, Bumbaca Yadav D, Sukumaran S, Ramanujan S, Paxson R, Gadkar K (2018) gPKPDSim: a SimBiology((R))-based GUI application for PKPD modeling in drug development. J Pharmacokinet Pharmacodyn 45(2):259–275. https://doi.org/10.1007/s10928-017-9562-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diao L, Meibohm B (2015) Tools for predicting the PK/PD of therapeutic proteins. Expert Opin Drug Metab Toxicol 11(7):1115–1125. https://doi.org/10.1517/17425255.2015.1041917

    Article  CAS  PubMed  Google Scholar 

  28. Jusko WJ (2013) Moving from basic toward systems pharmacodynamic models. J Pharm Sci 102(9):2930–2940. https://doi.org/10.1002/jps.23590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31(5):510–518. https://doi.org/10.1124/dmd.31.5.510

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh S, Matsuoka Y, Asai Y, Hsin KY, Kitano H (2011) Software for systems biology: from tools to integrated platforms. Nat Rev Genet 12(12):821–832. https://doi.org/10.1038/nrg3096

    Article  CAS  PubMed  Google Scholar 

  31. Machado D, Costa RS, Rocha M, Ferreira EC, Tidor B, Rocha I (2011) Modeling formalisms in systems biology. AMB Express 1(1):45. https://doi.org/10.1186/2191-0855-1-45

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gadkar K, Kirouac DC, Mager DE, van der Graaf PH, Ramanujan S (2016) A six-stage workflow for robust application of systems pharmacology. CPT Pharmacomet Syst Pharmacol 5(5):235–249. https://doi.org/10.1002/psp4.12071

    Article  CAS  Google Scholar 

  33. Ermakov S, Schmidt BJ, Musante CJ, Thalhauser CJ (2019) A survey of software tool utilization and capabilities for quantitative systems pharmacology: what we have and what we need. CPT Pharmacomet Syst Pharmacol 8(2):62–76. https://doi.org/10.1002/psp4.12373

    Article  CAS  Google Scholar 

  34. Gadkar K, Budha N, Baruch A, Davis JD, Fielder P, Ramanujan S (2014) A mechanistic systems pharmacology model for prediction of LDL cholesterol lowering by pcsk9 antagonism in human dyslipidemic populations. CPT Pharmacomet Syst Pharmacol 3:e149. https://doi.org/10.1038/psp.2014.47

    Article  CAS  Google Scholar 

  35. Ming JE, Abrams RE, Bartlett DW, Tao M, Nguyen T, Surks H, Kudrycki K, Kadambi A, Friedrich CM, Djebli N, Goebel B, Koszycki A, Varshnaya M, Elassal J, Banerjee P, Sasiela WJ, Reed MJ, Barrett JS, Azer K (2017) A quantitative systems pharmacology platform to investigate the impact of alirocumab and cholesterol-lowering therapies on lipid profiles and plaque characteristics. Gene Regul Syst Biol 11:1177625017710941. https://doi.org/10.1177/1177625017710941

    Article  CAS  Google Scholar 

  36. Pappalardo F, Musumeci S, Motta S (2008) Modeling immune system control of atherogenesis. Bioinformatics 24(15):1715–1721. https://doi.org/10.1093/bioinformatics/btn306

    Article  CAS  PubMed  Google Scholar 

  37. Gong C, Ruiz-Martinez A, Kimko H, Popel AS (2021) A spatial quantitative systems pharmacology platform spQSP-IO for simulations of tumor-immune interactions and effects of checkpoint inhibitor immunotherapy. Cancers (Basel). https://doi.org/10.3390/cancers13153751

    Article  PubMed Central  Google Scholar 

  38. Friedrich CM (2016) A model qualification method for mechanistic physiological QSP models to support model-informed drug development. CPT: Pharmacomet Syst Pharmacol 5(2):43–53. https://doi.org/10.1002/psp4.12056

    Article  CAS  Google Scholar 

  39. Kirouac DC (2018) How do we “Validate” a QSP model? CPT Pharmacomet Syst Pharmacol 7(9):547–548. https://doi.org/10.1002/psp4.12310

    Article  CAS  Google Scholar 

  40. Lee G, Park C, Ahn J (2019) Novel deep learning model for more accurate prediction of drug-drug interaction effects. BMC Bioinformatics 20(1):415. https://doi.org/10.1186/s12859-019-3013-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guthrie NL, Carpenter J, Edwards KL, Appelbaum KJ, Dey S, Eisenberg DM, Katz DL, Berman MA (2019) Emergence of digital biomarkers to predict and modify treatment efficacy: machine learning study. BMJ Open 9(7):e030710. https://doi.org/10.1136/bmjopen-2019-030710

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang H, Sun L, Li W, Liu G, Tang Y (2018) In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem 6:30. https://doi.org/10.3389/fchem.2018.00030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu Y, Wang G (2018) Machine learning based toxicity prediction: from chemical structural description to transcriptome analysis. Int J Mol Sci. https://doi.org/10.3390/ijms19082358

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T (2018) The rise of deep learning in drug discovery. Drug Discov Today 23(6):1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

    Article  PubMed  Google Scholar 

  45. Zhang Y, Wong YS, Deng J, Anton C, Gabos S, Zhang W, Huang DY, Jin C (2016) Machine learning algorithms for mode-of-action classification in toxicity assessment. BioData Min 9:19. https://doi.org/10.1186/s13040-016-0098-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McComb M, Bies R, Ramanathan M (2021) Machine learning in pharmacometrics: opportunities and challenges. Br J Clin Pharmacol. https://doi.org/10.1111/bcp.14801

    Article  PubMed  Google Scholar 

  47. Zhang T, Androulakis IP, Bonate P, Cheng L, Helikar T, Parikh J, Rackauckas C, Subramanian K, Cho CR, Working G (2022) Two heads are better than one: current landscape of integrating QSP and machine learning: an ISoP QSP SIG white paper by the working group on the integration of quantitative systems pharmacology and machine learning. J Pharmacokinet Pharmacodyn 49(1):5–18. https://doi.org/10.1007/s10928-022-09805-z

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lazarou G, Chelliah V, Small BG, Walker M, van der Graaf PH, Kierzek AM (2020) Integration of omics data sources to inform mechanistic modeling of immune-oncology therapies: a tutorial for clinical pharmacologists. Clin Pharmacol Ther 107(4):858–870. https://doi.org/10.1002/cpt.1786

    Article  PubMed  PubMed Central  Google Scholar 

  49. Putnins M, Campagne O, Mager DE, Androulakis IP (2022) From data to QSP models: a pipeline for using Boolean networks for hypothesis inference and dynamic model building. J Pharmacokinet Pharmacodyn. https://doi.org/10.1007/s10928-021-09797-2

    Article  PubMed  Google Scholar 

  50. Qian Z, Zame W, Fleuren L, Elbers P, van der Schaar M (2021) Integrating expert ODEs into neural ODEs: pharmacology and disease progression. Adv Neural Inf Process Syst 34:11364–83

    Google Scholar 

  51. Uddin S, Khan A, Hossain ME, Moni MA (2019) Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 19(1):281. https://doi.org/10.1186/s12911-019-1004-8

    Article  PubMed  PubMed Central  Google Scholar 

  52. Topp B, Trujillo ME, Sinha V (2019) Industrialization of quantitative systems pharmacology. CPT: Pharmacomet Syst Pharmacol 8(6):356–358. https://doi.org/10.1002/psp4.12427

    Article  CAS  Google Scholar 

  53. Gauthier J, Vincent AT, Charette SJ, Derome N (2019) A brief history of bioinformatics. Brief Bioinform 20(6):1981–1996. https://doi.org/10.1093/bib/bby063

    Article  PubMed  Google Scholar 

  54. Katayama T, Arakawa K, Nakao M, Ono K, Aoki-Kinoshita KF, Yamamoto Y, Yamaguchi A, Kawashima S, Chun HW, Aerts J, Aranda B, Barboza LH, Bonnal RJ, Bruskiewich R, Bryne JC, Fernandez JM, Funahashi A, Gordon PM, Goto N, Groscurth A, Gutteridge A, Holland R, Kano Y, Kawas EA, Kerhornou A, Kibukawa E, Kinjo AR, Kuhn M, Lapp H, Lehvaslaiho H, Nakamura H, Nakamura Y, Nishizawa T, Nobata C, Noguchi T, Oinn TM, Okamoto S, Owen S, Pafilis E, Pocock M, Prins P, Ranzinger R, Reisinger F, Salwinski L, Schreiber M, Senger M, Shigemoto Y, Standley DM, Sugawara H, Tashiro T, Trelles O, Vos RA, Wilkinson MD, York W, Zmasek CM, Asai K, Takagi T (2010) The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. The DBCLS BioHackathon Consortium*. J Biomed Semantics 1 (1):8. https://doi.org/10.1186/2041-1480-1-8

  55. Wang Y, Huang SM (2019) Commentary on fit-for-purpose models for regulatory applications. J Pharm Sci 108(1):18–20. https://doi.org/10.1016/j.xphs.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  56. Yang J, Mager DE, Straubinger RM (2010) Comparison of two pharmacodynamic transduction models for the analysis of tumor therapeutic responses in model systems. AAPS J 12(1):1–10. https://doi.org/10.1208/s12248-009-9155-7

    Article  CAS  PubMed  Google Scholar 

  57. Cucurull-Sanchez L, Chappell MJ, Chelliah V, Amy Cheung SY, Derks G, Penney M, Phipps A, Malik-Sheriff RS, Timmis J, Tindall MJ, van der Graaf PH, Vicini P, Yates JWT (2019) Best practices to maximize the use and reuse of quantitative and systems pharmacology models: recommendations from the United Kingdom quantitative and systems pharmacology network. CPT Pharmacomet Syst Pharmacol 8(5):259–272. https://doi.org/10.1002/psp4.12381

    Article  CAS  Google Scholar 

  58. Duffull SB (2016) A philosophical framework for integrating systems pharmacology models into pharmacometrics. CPT: Pharmacomet Syst Pharmacol 5(12):649–655. https://doi.org/10.1002/psp4.12148

    Article  CAS  Google Scholar 

  59. Cheng Y, Thalhauser CJ, Smithline S, Pagidala J, Miladinov M, Vezina HE, Gupta M, Leil TA, Schmidt BJ (2017) QSP toolbox: computational implementation of integrated workflow components for deploying multi-scale mechanistic models. AAPS J 19(4):1002–1016. https://doi.org/10.1208/s12248-017-0100-x

    Article  CAS  PubMed  Google Scholar 

  60. Drager A, Palsson BO (2014) Improving collaboration by standardization efforts in systems biology. Front Bioeng Biotechnol 2:61. https://doi.org/10.3389/fbioe.2014.00061

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hosseini I, Feigelman J, Gajjala A, Susilo M, Ramakrishnan V, Ramanujan S, Gadkar K (2020) gQSPSim: a SimBiology-based GUI for standardized QSP model development and application. CPT: Pharmacomet Syst Pharmacol 9(3):165–176. https://doi.org/10.1002/psp4.12494

    Article  CAS  Google Scholar 

  62. Helmlinger G, Sokolov V, Peskov K, Hallow KM, Kosinsky Y, Voronova V, Chu L, Yakovleva T, Azarov I, Kaschek D, Dolgun A, Schmidt H, Boulton DW, Penland RC (2019) Quantitative systems pharmacology: an exemplar model-building workflow with applications in cardiovascular, metabolic, and oncology drug development. CPT: Pharmacomet Syst Pharmacol 8(6):380–395. https://doi.org/10.1002/psp4.12426

    Article  CAS  Google Scholar 

  63. Peterson MC, Riggs MM (2015) FDA advisory meeting clinical pharmacology review utilizes a quantitative systems pharmacology (QSP) model: a watershed moment? CPT Pharmacomet Syst Pharmacol 4(3):e00020. https://doi.org/10.1002/psp4.20

    Article  CAS  Google Scholar 

  64. FDA (2017) US FDA regulatory science priorities (FY 2017).

  65. FDA (2011) Advancing regulatory science at FDA. A strategic plan.

  66. FDA (2020) The use of physiologically based pharmacokinetic analyses — biopharmaceutics applications for oral drug product development, manufacturing changes, and controls. Guidance for Industry.

  67. Morrison TM, Pathmanathan P, Adwan M, Margerrison E (2018) Advancing regulatory science with computational modeling for medical devices at the FDA’s office of science and engineering laboratories. Front Med (Lausanne) 5:241. https://doi.org/10.3389/fmed.2018.00241

    Article  Google Scholar 

  68. Bai JPF, Schmidt BJ, Gadkar KG, Damian V, Earp JC, Friedrich C, van der Graaf PH, Madabushi R, Musante CJ, Naik K, Rogge M, Zhu H (2021) FDA-industry scientific exchange on assessing quantitative systems pharmacology models in clinical drug development: a meeting report, summary of challenges/gaps, and future perspective. AAPS J 23(3):60. https://doi.org/10.1208/s12248-021-00585-x

    Article  PubMed  Google Scholar 

  69. Bradshaw EL, Spilker ME, Zang R, Bansal L, He H, Jones RDO, Le K, Penney M, Schuck E, Topp B, Tsai A, Xu C, Nijsen M, Chan JR (2019) Applications of quantitative systems pharmacology in model-informed drug discovery: perspective on impact and opportunities. CPT Pharmacomet Syst Pharmacol 8(11):777–791. https://doi.org/10.1002/psp4.12463

    Article  CAS  Google Scholar 

  70. Zineh I (2019) Quantitative systems pharmacology: a regulatory perspective on translation. CPT Pharmacomet Syst Pharmacol 8(6):336–339. https://doi.org/10.1002/psp4.12403

    Article  CAS  Google Scholar 

  71. Leil TA, Bertz R (2014) Quantitative systems pharmacology can reduce attrition and improve productivity in pharmaceutical research and development. Front Pharmacol 5:247. https://doi.org/10.3389/fphar.2014.00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

IPA acknowledges support from NIH GM131800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis P. Androulakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Androulakis, I.P. Towards a comprehensive assessment of QSP models: what would it take?. J Pharmacokinet Pharmacodyn (2022). https://doi.org/10.1007/s10928-022-09820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10928-022-09820-0

Keywords

Navigation