Skip to main content

Applications of Quantitative System Pharmacology Modeling to Model-Informed Drug Development

  • Protocol
  • First Online:
Systems Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2486))

Abstract

Significant advances in analytical technologies have dramatically improved our ability to deconvolute disease biology at molecular, cellular, and tissue levels. Quantitative system pharmacology (QSP) modeling is a computational framework to systematically integrate pharmaceutical properties of a drug candidate with scientific understanding of that deeper disease etiology, target expression, genetic variability, and human physiological processes, thus enabling more insightful drug development decisions related to efficacy and safety. In this chapter, we discuss the key attributes of QSP models in comparison to traditional models. We discuss a recommended four-step process to construct a QSP model to support drug development decisions. A number of illustrative QSP examples related to high-value drug development questions and decisions impacting target identification, lead generation and optimization, first in human studies, and clinical dose and schedule optimization are covered in the chapter. The future perspectives of QSP in the context of potential regulatory acceptance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ADC:

Antibody drug conjugates

ADME:

Absorption, distribution, metabolism, and excretion

CAR-T:

Chimeric antigen receptor T cells

CRS:

Cytokine release syndrome

FDA:

Food and Drug Administration

GnRH:

Gonadotropin-releasing hormone

IND:

Investigational new drug

IQ:

Innovation and quality

Kint:

Internalization rate

Koff:

Dissociation constant

Kon:

Association constant

PK/PD:

Pharmacokinetic–pharmacodynamic

Q3W:

Every 3 weeks

R&D:

Research and Development

References

  1. Mullard A (2016) Parsing clinical success rates. Nat Rev Drug Discov 15(7):447. https://doi.org/10.1038/nrd.2016.136

    Article  CAS  PubMed  Google Scholar 

  2. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012

    Article  PubMed  Google Scholar 

  3. Scannell JW, Blanckley A, Boldon H et al (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11(3):191–200. https://doi.org/10.1038/nrd3681

    Article  CAS  PubMed  Google Scholar 

  4. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  6. Wu AR, Neff NF, Kalisky T et al (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11(1):41–46. https://doi.org/10.1038/nmeth.2694

    Article  CAS  PubMed  Google Scholar 

  7. van der Graaf PH, Benson N (2011) Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm Res 28(7):1460–1464. https://doi.org/10.1007/s11095-011-0467-9

    Article  CAS  PubMed  Google Scholar 

  8. Nijsen M, Wu F, Bansal L et al (2018) Preclinical QSP modeling in the pharmaceutical industry: an IQ consortium survey examining the current landscape. CPT Pharmacometrics Syst Pharmacol 7(3):135–146. https://doi.org/10.1002/psp4.12282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leil TA, Bertz R (2014) Quantitative systems pharmacology can reduce attrition and improve productivity in pharmaceutical research and development. Front Pharmacol 5:247. https://doi.org/10.3389/fphar.2014.00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chaouiya C, Berenguier D, Keating SM et al (2013) SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Syst Biol 7:135. https://doi.org/10.1186/1752-0509-7-135

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park JS, Kim JR (2019) Non-compartmental data analysis using SimBiology and MATLAB. Transl Clin Pharmacol 27(3):89–91. https://doi.org/10.12793/tcp.2019.27.3.89

    Article  PubMed  PubMed Central  Google Scholar 

  12. Putnins M, Androulakis IP (2019) Boolean modeling in quantitative systems pharmacology: challenges and opportunities. Crit Rev Biomed Eng 47(6):473–488. https://doi.org/10.1615/CritRevBiomedEng.2020030796

    Article  PubMed  Google Scholar 

  13. Hasegawa C, Duffull SB (2018) Automated scale reduction of nonlinear QSP models with an illustrative application to a bone biology system. CPT Pharmacometrics Syst Pharmacol 7(9):562–572. https://doi.org/10.1002/psp4.12324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Derbalah A, Al-Sallami H, Hasegawa C et al (2020) A framework for simplification of quantitative systems pharmacology models in clinical pharmacology. Br J Clin Pharmacol 1–11. https://doi.org/10.1111/bcp.14451

  15. Hasegawa C, Duffull SB (2017) Selection and qualification of simplified QSP models when using model order reduction techniques. AAPS J 20(1):2. https://doi.org/10.1208/s12248-017-0170-9

    Article  CAS  PubMed  Google Scholar 

  16. Ribba B, Grimm HP, Agoram B et al (2017) Methodologies for quantitative systems pharmacology (QSP) models: design and estimation. CPT Pharmacometrics Syst Pharmacol 6(8):496–498. https://doi.org/10.1002/psp4.12206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hughes JP, Rees S, Kalindjian SB et al (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doody RS, Thomas RG, Farlow M et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321. https://doi.org/10.1056/NEJMoa1312889

    Article  CAS  PubMed  Google Scholar 

  19. Clausznitzer D, Pichardo-Almarza C, Relo AL et al (2018) Quantitative systems pharmacology model for Alzheimer disease indicates targeting sphingolipid dysregulation as potential treatment option. CPT Pharmacometrics Syst Pharmacol 7(11):759–770. https://doi.org/10.1002/psp4.12351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Russell DW, Halford RW, Ramirez DM et al (2009) Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu Rev Biochem 78:1017–1040. https://doi.org/10.1146/annurev.biochem.78.072407.103859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wronowska W, Charzynska A, Nienaltowski K et al (2015) Computational modeling of sphingolipid metabolism. BMC Syst Biol 9:47. https://doi.org/10.1186/s12918-015-0176-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hobson AD, Harris CM, van der Kam EL et al (2015) Discovery of A-971432, an orally bioavailable selective sphingosine-1-phosphate receptor 5 (S1P5) agonist for the potential treatment of neurodegenerative disorders. J Med Chem 58(23):9154–9170. https://doi.org/10.1021/acs.jmedchem.5b00928

    Article  CAS  PubMed  Google Scholar 

  23. Tiwari A, Abraham AK, Harrold JM et al (2017) Optimal affinity of a monoclonal antibody: guiding principles using mechanistic modeling. AAPS J 19(2):510–519. https://doi.org/10.1208/s12248-016-0004-1

    Article  CAS  PubMed  Google Scholar 

  24. Betts A, Haddish-Berhane N, Shah DK et al (2019) A translational quantitative systems pharmacology model for CD3 bispecific molecules: application to quantify T cell-mediated tumor cell killing by P-cadherin LP DART((R)). AAPS J 21(4):66. https://doi.org/10.1208/s12248-019-0332-z

    Article  PubMed  Google Scholar 

  25. Shah DK, Haddish-Berhane N, Betts A (2012) Bench to bedside translation of antibody drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J Pharmacokinet Pharmacodyn 39(6):643–659. https://doi.org/10.1007/s10928-012-9276-y

    Article  PubMed  Google Scholar 

  26. Hosseini I, Gadkar K, Stefanich E et al (2020) Mitigating the risk of cytokine release syndrome in a Phase I trial of CD20/CD3 bispecific antibody mosunetuzumab in NHL: impact of translational system modeling. NPJ Syst Biol Appl 6(1):28. https://doi.org/10.1038/s41540-020-00145-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rezvani AR, Maloney DG (2011) Rituximab resistance. Best Pract Res Clin Haematol 24(2):203–216. https://doi.org/10.1016/j.beha.2011.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bargou R, Leo E, Zugmaier G et al (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321(5891):974–977. https://doi.org/10.1126/science.1158545

    Article  CAS  PubMed  Google Scholar 

  29. Teachey DT, Rheingold SR, Maude SL et al (2013) Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121(26):5154–5157. https://doi.org/10.1182/blood-2013-02-485623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stein AS, Schiller G, Benjamin R et al (2019) Neurologic adverse events in patients with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab: management and mitigating factors. Ann Hematol 98(1):159–167. https://doi.org/10.1007/s00277-018-3497-0

    Article  CAS  PubMed  Google Scholar 

  31. Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non–small-cell lung cancer. N Engl J Med 372(21):2018–2028. https://doi.org/10.1056/NEJMoa1501824

    Article  PubMed  Google Scholar 

  32. Lindauer A, Valiathan CR, Mehta K et al (2017) Translational pharmacokinetic/pharmacodynamic modeling of tumor growth inhibition supports dose-range selection of the anti-PD-1 antibody pembrolizumab. CPT Pharmacometrics Syst Pharmacol 6(1):11–20. https://doi.org/10.1002/psp4.12130

    Article  CAS  PubMed  Google Scholar 

  33. Khurana M, Zadezensky I, Lowy N et al (2019) Use of a systems pharmacology model based approach toward dose optimization of parathyroid hormone therapy in hypoparathyroidism. Clin Pharmacol Ther 105(3):710–718. https://doi.org/10.1002/cpt.1200

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Z. X. Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, A.Z.X., Rogge, M. (2022). Applications of Quantitative System Pharmacology Modeling to Model-Informed Drug Development. In: Bai, J.P., Hur, J. (eds) Systems Medicine. Methods in Molecular Biology, vol 2486. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2265-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2265-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2264-3

  • Online ISBN: 978-1-0716-2265-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics