Skip to main content
Log in

Assessment of non-linear combination effect terms for drug–drug interactions

  • Review Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Drugs interact with their targets in different ways. A diversity of modeling approaches exists to describe the combination effects of two drugs. We investigate several combination effect terms (CET) regarding their underlying mechanism based on drug-receptor binding kinetics, empirical and statistical summation principles and indirect response models. A list with properties is provided and the interrelationship of the CETs is analyzed. A method is presented to calculate the optimal drug concentration pair to produce the half-maximal combination effect. This work provides a comprehensive overview of typically applied CETs and should shed light into the question as to which CET is appropriate for application in pharmacokinetic/pharmacodynamic models to describe a specific drug–drug interaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31(5):510–518

    Article  CAS  PubMed  Google Scholar 

  2. Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:iv–vii

    Google Scholar 

  3. Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P (2008) The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol 22(6):633–648

    Article  CAS  PubMed  Google Scholar 

  4. Wagner JG (1968) Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man. J Theor Biol 20(2):173–201

    Article  CAS  PubMed  Google Scholar 

  5. Michaelis L, Menten ML (1913) Die Kinetic der Invertinwirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  6. Ariens EJ, Van Rossum JM, Simonis AM (1957) Affinity, intrinsic activity and drug interactions. Pharmacol Rev 9(2):218–236

    CAS  PubMed  Google Scholar 

  7. Ariens EJ, Simonis AM (1964) A molecular basis for drug action. J Pharm Pharmacol 16:137–157

    Article  CAS  Google Scholar 

  8. Ariens EJ, Simonis AM (1964) A molecular basis for durg action. The interaction of one or more drugs with different receptors. J Pharm Pharmacol 16:289–312

    Article  CAS  Google Scholar 

  9. Greco WR, Park HS, Rustum YM (1990) Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-beta-D-arabinofuranosylcytosine. Cancer Res 50(17):5318–5327

    CAS  PubMed  Google Scholar 

  10. Earp J, Krzyzanski W, Chakraborty A, Zamacona MK, Jusko WJ (2004) Assessment of drug interactions relevant to pharmacodynamic indirect response models. J Pharmacokinet Pharmacodyn 31(5):345–380

    Article  CAS  PubMed  Google Scholar 

  11. Kong M, Lee JJ (2006) A generalized response surface model with varying relative potency for assessing drug interaction. Biometrics 62(4):986–995

    Article  PubMed  Google Scholar 

  12. Twarog NR, Stewart E, Hammill CV, Shelat A A (2016) BRAID: a unifying paradigm for the analysis of combined drug action. Sci Rep 6:25523

    Article  PubMed  PubMed Central  Google Scholar 

  13. Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A, Shafer SL (2000) Response surface model for anesthetic drug interactions. Anesthesiology 92(6):1603–1616

    Article  CAS  PubMed  Google Scholar 

  14. Chakraborty A, Jusko WJ (2002) Pharmacodynamic interaction of recombinant human interleukin-10 and prednisolone using in vitro whole blood lymphocyte proliferation. J Pharm Sci 91(5):1334–1342

    Article  CAS  PubMed  Google Scholar 

  15. Koch G, Walz A, Lahu G, Schropp J (2009) Modeling of tumor growth and anticancer effects of combination therapy. J Pharmacokinet Pharmacodyn 36(2):179–197

    Article  CAS  PubMed  Google Scholar 

  16. Pawaskar DK, Straubinger RM, Fetterly GJ, Ma WW, Jusko WJ (2013) Interactions of everolimus and sorafenib in pancreatic cancer cells. AAPS J 15(1):78–84

    Article  CAS  PubMed  Google Scholar 

  17. Koch G, Schropp J (2013) Mathematical concepts in pharmacokinetics and pharmacodynamics with application to tumor Growth. In: Kloeden EP, Pötzsche C (eds) Nonautonomous dynamical systems in the life sciences. Springer International Publishing, Cham, pp 225–250

    Chapter  Google Scholar 

  18. Mould DR, Walz AC, Lave T, Gibbs JP, Frame B (2015) Developing exposure/response models for anticancer drug treatment: special considerations. CPT Pharmacometrics Syst Pharmacol 4(1):e00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miao X, Koch G, Straubinger RM, Jusko WJ (2016) Pharmacodynamic modeling of combined chemotherapeutic effects predicts synergistic activity of gemcitabine and trabectedin in pancreatic cancer cells. Cancer Chemother Pharmacol 77(1):181–193

    Article  CAS  PubMed  Google Scholar 

  20. Goteti K, Garner CE, Utley L, Dai J, Ashwell S, Moustakas DT, Gonen M, Schwartz GK, Kern SE, Zabludoff S, Brassil PJ (2010) Preclinical pharmacokinetic/pharmacodynamic models to predict synergistic effects of co-administered anti-cancer agents. Cancer Chemother Pharmacol 66(2):245–254

    Article  CAS  PubMed  Google Scholar 

  21. Bonate PL, Howard DR (2011) Pharmacokinetics in drug development: advances and applications, vol 3. Springer, New York

    Book  Google Scholar 

  22. Bradshaw-Pierce EL, Pitts TM, Kulikowski G, Selby H, Merz AL, Gustafson DL, Serkova NJ, Eckhardt SG, Weekes CD (2013) Utilization of quantitative in vivo pharmacology approaches to assess combination effects of everolimus and irinotecan in mouse xenograft models of colorectal cancer. PLoS ONE 8(3):e58089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choo EF, Ng CM, Berry L, Belvin M, Lewin-Koh N, Merchant M, Salphati L (2013) PK-PD modeling of combination efficacy effect from administration of the MEK inhibitor GDC-0973 and PI3 K inhibitor GDC-0941 in A2058 xenografts. Cancer Chemother Pharmacol 71(1):133–143

    Article  CAS  PubMed  Google Scholar 

  24. Li M, Li H, Cheng X, Wang X, Li L, Zhou T, Lu W (2013) Preclinical pharmacokinetic/pharmacodynamic models to predict schedule-dependent interaction between erlotinib and gemcitabine. Pharm Res 30(5):1400–1408

    Article  CAS  PubMed  Google Scholar 

  25. Wu Q, Li MY, Li HQ, Deng CH, Li L, Zhou TY, Lu W (2013) Pharmacokinetic-pharmacodynamic modeling of the anticancer effect of erlotinib in a human non-small cell lung cancer xenograft mouse model. Acta Pharmacol Sin 34(11):1427–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu X, Straubinger RM, Jusko WJ (2015) Mechanism-based mathematical modeling of combined gemcitabine and birinapant in pancreatic cancer cells. J Pharmacokinet Pharmacodyn 42(5):477–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamed SS, Roth CM (2011) Mathematical modeling to distinguish cell cycle arrest and cell killing in chemotherapeutic concentration response curves. J Pharmacokinet Pharmacodyn 38(3):385–403

    Article  PubMed  Google Scholar 

  28. Schättler H, Ledzewicz U (2015) Optimal control for mathematical models of cancer therapies: an application of geometric methods. Interdisciplinary applied mathematics, vol 42. Springer, New York

  29. Banks HT (1975) Modeling and control in the biomedical sciences. Lecture notes in biomathematics, vol 6. Springer, Berlin

  30. Yan X, Chen Y, Krzyzanski W (2012) Methods of solving rapid binding target-mediated drug disposition model for two drugs competing for the same receptor. J Pharmacokinet Pharmacodyn 39(5):543–560

    Article  PubMed  PubMed Central  Google Scholar 

  31. Oosterhuis B, van Boxtel CJ (1988) Kinetics of drug effects in man. Ther Drug Monit 10(2):121–132

    Article  CAS  PubMed  Google Scholar 

  32. Milad MA, Ludwig EA, Anne S, Middleton E Jr, Jusko WJ (1994) Pharmacodynamic model for joint exogenous and endogenous corticosteroid suppression of lymphocyte trafficking. J Pharmacokinet Biopharm 22(6):469–480

    Article  CAS  PubMed  Google Scholar 

  33. Kenakin T (2009) A pharmacology primer: theory application and methods. Elsevier, Burlington

    Google Scholar 

  34. Berenbaum MC (1989) What is synergy? Pharmacol Rev 41(2):93–141

    CAS  PubMed  Google Scholar 

  35. Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47(2):331–385

    CAS  PubMed  Google Scholar 

  36. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681

    Article  CAS  PubMed  Google Scholar 

  37. Tang J, Wennerberg K, Aittokallio T (2015) What is synergy? The Saariselka agreement revisited. Front Pharmacol 6:181

    Article  PubMed  PubMed Central  Google Scholar 

  38. Loewe S (1928) Die quantitativen Probleme der Pharmakologie. Ergebnisse der Physiologie 27(1):47–187

    Article  Google Scholar 

  39. Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK (2006) Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2(9):458–466

    Article  CAS  PubMed  Google Scholar 

  40. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  41. Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615

    Article  CAS  Google Scholar 

  42. Jonker DM, Visser SA, van der Graaf PH, Voskuyl RA, Danhof M (2005) Towards a mechanism-based analysis of pharmacodynamic drug-drug interactions in vivo. Pharmacol Ther 106(1):1–18

    Article  CAS  PubMed  Google Scholar 

  43. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21(4):457–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wetzler M, Earp JC, Brady MT, Keng MK, Jusko WJ (2007) Synergism between arsenic trioxide and heat shock protein 90 inhibitors on signal transducer and activator of transcription protein 3 activity–pharmacodynamic drug-drug interaction modeling. Clin Cancer Res 13(7):2261–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berenbaum MC (1977) Synergy, additivism and antagonism in immunosuppression: a critical review. Clin Exp Immuno 28(1):1–18

    CAS  Google Scholar 

  46. Gabrielsson J, Gibbons FD, Peletier LA (2016) Mixture dynamics: combination therapy in oncology. Eur J Pharm Sci 88:133–146

    Article  Google Scholar 

  47. Jeleazcov C, Ihmsen H, Schmidt J, Ammon C, Schwilden H, Schuttler J, Fechner J (2008) Pharmacodynamic modelling of the bispectral index response to propofol-based anaesthesia during general surgery in children. Br J Anaesth 100(4):509–516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health [GM 24211], the National Research Fund, Luxembourg, and co-funded under the Marie Curie Actions of the European Commission (FP7-COFUND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Koch.

Appendices

Appendix 1: Drug receptor binding kinetics

General derivation

From the conservation of receptors and complexes Eq. (11) we obtain the receptor representation

$$R = \left( {R_{tot}^{0} - RC_{A} - RC_{B} - RC_{AB} } \right) .$$
(51)

Rewriting the complexes Eqs. (8)–(10) with Eq. (51)

$$\begin{aligned} \frac{d}{dt}RC_{A} & = k_{onA} C_{A} \left( {R_{tot}^{0} - RC_{A} - RC_{B} - RC_{AB} } \right) - k_{offA} RC_{A} - k_{onB} C_{B} RC_{A} \\ & \quad + k_{offB} RC_{AB} \\ \end{aligned}$$
(52)
$$\frac{d}{dt}RC_{B} = k_{onB} C_{B} \left( {R_{tot}^{0} - RC_{A} - RC_{B} - RC_{AB} } \right) - k_{offB} RC_{B}$$
(53)
$$\frac{d}{dt}RC_{AB} = k_{onB} C_{B} RC_{A} - k_{offB} RC_{AB} .$$
(54)

Pseudo steady-state analysis of Eqs. (52)–(54) for the complexes and substituting Eq. (54) into Eq. (52) then leads to

$$\begin{aligned} 0 & = k_{onA} C_{A} \left( {R_{tot}^{0} - RC_{A} - RC_{B} - RC_{AB} } \right) - k_{offA} RC_{A} \\ 0 & = k_{onB} C_{B} \left( {R_{tot}^{0} - RC_{A} - RC_{B} - RC_{AB} } \right) - k_{offB} RC_{B} \\ 0 & = k_{onB} C_{B} RC_{A} - k_{offB} RC_{AB} . \\ \end{aligned}$$

With \(K_{DA} = \frac{{k_{offA} }}{{k_{onA} }}\) and \(K_{DB} = \frac{{k_{offB} }}{{k_{onB} }}\) we obtain

$$0 = C_{A} \left( {R_{tot}^{0} - RC_{A} - RC_{B} - RC_{AB} } \right) - K_{DA} RC_{A}$$
(55)
$$0 = C_{B} \left( {R_{tot}^{0} - RC_{A} - RC_{B} - RC_{AB} } \right) - K_{DB} RC_{B}$$
(56)
$$0 = C_{B} RC_{A} - K_{DB} RC_{AB} \, .$$
(57)

Dividing Eq. (55) by \(K_{DA}\) and Eqs. (56)–(57) by \(K_{DB}\) we obtain the matrix notation Eq. (12)

$$\left( {\begin{array}{*{20}c} {1 + \frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} \\ {\frac{{C_{B} }}{{K_{DB} }}} & {1 + \frac{{C_{B} }}{{K_{DB} }}} & {\frac{{C_{B} }}{{K_{DB} }}} \\ { - \frac{{C_{B} }}{{K_{DB} }}} & 0 & 1 \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {RC_{A} } \\ {RC_{B} } \\ {RC_{AB} } \\ \end{array} } \right) = R_{tot}^{0} \left( {\begin{array}{*{20}c} {\frac{{C_{A} }}{{K_{DA} }}} \\ {\frac{{C_{B} }}{{K_{DB} }}} \\ 0 \\ \end{array} } \right) .$$

We apply Cramer’s rule and obtain

$$M_{0} = \det \left( {\begin{array}{*{20}c} {1 + \frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} \\ {\frac{{C_{B} }}{{K_{DB} }}} & {1 + \frac{{C_{B} }}{{K_{DB} }}} & {\frac{{C_{B} }}{{K_{DB} }}} \\ { - \frac{{C_{B} }}{{K_{DB} }}} & 0 & 1 \\ \end{array} } \right) = 1 + \frac{{C_{A} }}{{K_{DA} }} + \frac{{C_{B} }}{{K_{DB} }} + \frac{{C_{A} C_{B} }}{{K_{DA} K_{DB} }} > 0$$
$$M_{1} = \det \left( {\begin{array}{*{20}c} {R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} \\ {R_{tot}^{0} \frac{{C_{B} }}{{K_{DB} }}} & {1 + \frac{{C_{B} }}{{K_{DB} }}} & {\frac{{C_{B} }}{{K_{DB} }}} \\ 0 & 0 & 1 \\ \end{array} } \right) = R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }} \ge 0$$
$$M_{2} = \det \left( {\begin{array}{*{20}c} {1 + \frac{{C_{A} }}{{K_{DA} }}} & {R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} \\ {\frac{{C_{B} }}{{K_{DB} }}} & {R_{tot}^{0} \frac{{C_{B} }}{{K_{DB} }}} & {\frac{{C_{B} }}{{K_{DB} }}} \\ { - \frac{{C_{B} }}{{K_{DB} }}} & 0 & 1 \\ \end{array} } \right) = R_{tot}^{0} \frac{{C_{B} }}{{K_{DB} }} \ge 0$$
$$M_{3} = \det \left( {\begin{array}{*{20}c} {1 + \frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} & {R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}} \\ {\frac{{C_{B} }}{{K_{DB} }}} & {1 + \frac{{C_{B} }}{{K_{DB} }}} & {R_{tot}^{0} \frac{{C_{B} }}{{K_{DB} }}} \\ { - \frac{{C_{B} }}{{K_{DB} }}} & 0 & 0 \\ \end{array} } \right) = R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}\frac{{C_{B} }}{{K_{DB} }} \ge 0.$$

Note that \(M_{0}\) is strictly positive and \(M_{i}\), \(i = 1,2,3\) are non-negative for \(C_{A} ,C_{B} \ge 0\). The complexes then read

$$RC_{A} = \frac{{M_{1} }}{{M_{0} }} = \frac{{R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}}}{{1 + \frac{{C_{A} }}{{K_{DA} }} + \frac{{C_{B} }}{{K_{DB} }} + \frac{{C_{A} C_{B} }}{{K_{DA} K_{DB} }}}}$$
(58)
$$RC_{B} = \frac{{M_{2} }}{{M_{0} }} = \frac{{R_{tot}^{0} \frac{{C_{B} }}{{K_{DB} }}}}{{1 + \frac{{C_{A} }}{{K_{DA} }} + \frac{{C_{B} }}{{K_{DB} }} + \frac{{C_{A} C_{B} }}{{K_{DA} K_{DB} }}}}$$
(59)
$$RC_{AB} = \frac{{M_{3} }}{{M_{0} }} = \frac{{R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}\frac{{C_{B} }}{{K_{DB} }}}}{{1 + \frac{{C_{A} }}{{K_{DA} }} + \frac{{C_{B} }}{{K_{DB} }} + \frac{{C_{A} C_{B} }}{{K_{DA} K_{DB} }}}} .$$
(60)

Inserting Eqs. (58)–(60) in Eq. (13) then results in Eq. (14).

Appendix 2: Competitive CET

Derivation

Applying Cramer’s rule to Eq. (15) gives

$$M_{0} = \det \left( {\begin{array}{*{20}c} {1 + \frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} \\ {\frac{{C_{B} }}{{K_{DB} }}} & {1 + \frac{{C_{B} }}{{K_{DB} }}} \\ \end{array} } \right) = 1 + \frac{{C_{A} }}{{K_{DA} }} + \frac{{C_{B} }}{{K_{DB} }} > 0$$
$$M_{1} = \det \left( {\begin{array}{*{20}c} {R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} \\ {R_{tot}^{0} \frac{{C_{B} }}{{K_{DB} }}} & {1 + \frac{{C_{B} }}{{K_{DB} }}} \\ \end{array} } \right) = R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }} \ge 0$$
$$M_{2} = \det \left( {\begin{array}{*{20}c} {1 + \frac{{C_{A} }}{{K_{DA} }}} & {R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}} \\ {\frac{{C_{B} }}{{K_{DB} }}} & {R_{tot}^{0} \frac{{C_{B} }}{{K_{DB} }}} \\ \end{array} } \right) = R_{tot}^{0} \frac{{C_{B} }}{{K_{DB} }} \ge 0 .$$

The complexes then read

$$RC_{A} = \frac{{M_{1} }}{{M_{0} }} = \frac{{R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}}}{{1 + \frac{{C_{A} }}{{K_{DA} }} + \frac{{C_{B} }}{{K_{DB} }}}}$$
(61)
$$RC_{B} = \frac{{M_{2} }}{{M_{0} }} = \frac{{R_{tot}^{0} \frac{{C_{B} }}{{K_{DB} }}}}{{1 + \frac{{C_{A} }}{{K_{DA} }} + \frac{{C_{B} }}{{K_{DB} }}}} .$$
(62)

Inserting Eqs. (61)-(62) in Eq. (16) then results in Eq. (17).

Maximal effect

$$\begin{aligned} E^{Com} \left( {C_{A} ,C_{B} } \right) & \le \hbox{max} \left\{ {E_{maxA} ,E_{maxB} } \right\}\frac{{\left( {\frac{{C_{A} }}{{EC_{50,A} }}} \right)^{{\gamma_{A} }} + \left( {\frac{{C_{B} }}{{EC_{50,B} }}} \right)^{{\gamma_{B} }} }}{{1 + \left( {\frac{{C_{A} }}{{EC_{50,A} }}} \right)^{{\gamma_{A} }} + \left( {\frac{{C_{B} }}{{EC_{50,B} }}} \right)^{{\gamma_{B} }} }} \\ & < \hbox{max} \left\{ {E_{maxA} ,E_{maxB} } \right\} \, . \\ \end{aligned}$$

Diagonality

If drug \(A\) equals drug \(B\), we have

$$E^{Com} \left( {\frac{{C_{A} }}{2},\frac{{C_{A} }}{2}} \right) = E_{maxA} \frac{{\frac{{C_{A} }}{{2EC_{50A} }} + \frac{{C_{A} }}{{2EC_{50A} }}}}{{1 + \frac{{C_{A} }}{{2EC_{50A} }} + \frac{{C_{A} }}{{2EC_{50A} }}}} = \frac{{E_{maxA} \frac{{C_{A} }}{{EC_{50A} }}}}{{1 + \frac{{C_{A} }}{{EC_{50A} }}}} = e\left( {C_{A} } \right) .$$

Agonistic-antagonist

For an antagonistic drug \(B\) we have \(e\left( {C_{B} } \right) = 0\) for \(C_{B} \ge 0\) and therefore \(E_{maxB} = 0\). Hence, we obtain with Eq. (18)

$$\begin{aligned} E^{Com} \left( {C_{A} ,C_{B} } \right) & = \frac{{E_{maxA} \left( {\frac{{C_{A} }}{{EC_{50,A} }}} \right)^{{\gamma_{A} }} +\, E_{maxB} \left( {\frac{{C_{B} }}{{EC_{50,B} }}} \right)^{{\gamma_{B} }} }}{{1 + \left( {\frac{{C_{A} }}{{EC_{50A} }}} \right)^{{\gamma_{A} }} + \left( {\frac{{C_{B} }}{{EC_{50B} }}} \right)^{{\gamma_{B} }} }} \\ & > \frac{{E_{maxA} \left( {\frac{{C_{A} }}{{EC_{50,A} }}} \right)^{{\gamma_{A} }} }}{{1 + \left( {\frac{{C_{A} }}{{EC_{50A} }}} \right)^{{\gamma_{A} }} + \left( {\frac{{C_{B} }}{{EC_{50B} }}} \right)^{{\gamma_{B} }} }} = E^{ComGad} \left( {C_{A} ,C_{B} } \right) . \\ \end{aligned}$$

Appendix 3: Uncompetitive CET

Derivation

The determinants for Cramer’s rule applied to Eq. (19) are

$$M_{0} = \det \left( {\begin{array}{*{20}c} {1 + \frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} \\ { - \frac{{C_{B} }}{{K_{DB} }}} & 1 \\ \end{array} } \right) = 1 + \frac{{C_{A} }}{{K_{DA} }} + \frac{{C_{A} }}{{K_{DA} }}\frac{{C_{B} }}{{K_{DB} }} > 0$$
$$M_{1} = \det \left( {\begin{array}{*{20}c} {R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}} & {\frac{{C_{A} }}{{K_{DA} }}} \\ 0 & 1 \\ \end{array} } \right) = R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }} \ge 0$$
$$M_{2} = \det \left( {\begin{array}{*{20}c} {1 + \frac{{C_{A} }}{{K_{DA} }}} & {R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}} \\ { - \frac{{C_{B} }}{{K_{DB} }}} & 0 \\ \end{array} } \right) = R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}\frac{{C_{B} }}{{K_{DB} }} \ge 0 .$$

The complexes then read

$$RC_{A} = \frac{{M_{1} }}{{M_{0} }} = \frac{{R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}}}{{1 + \frac{{C_{A} }}{{K_{DA} }} + \frac{{C_{A} }}{{K_{DA} }}\frac{{C_{B} }}{{K_{DB} }}}}$$
(63)
$$RC_{B} = \frac{{M_{2} }}{{M_{0} }} = \frac{{R_{tot}^{0} \frac{{C_{A} }}{{K_{DA} }}\frac{{C_{B} }}{{K_{DB} }}}}{{1 + \frac{{C_{A} }}{{K_{DA} }} + \frac{{C_{A} }}{{K_{DA} }}\frac{{C_{B} }}{{K_{DB} }}}} .$$
(64)

Inserting Eqs. (63)–(64) in Eq. (20) then results in Eq. (21).

Appendix 4: Loewe CET

Derivation

Rearranging Eq. (27) with respect to \(DC_{X}\) gives

$$DC_{X} = EC_{50X} \left( {\frac{E}{{E_{max} - E}}} \right)^{{\frac{1}{{\gamma_{X} }}}} .$$
(65)

Substituting Eq. (65) in Eq. (26) gives Eq. (28). Equation (28) can be written with \(\gamma_{A} = \gamma_{B} = \gamma\) as

$$E^{{\frac{1}{\gamma }}} = \left( {E_{max} - E} \right)^{{\frac{1}{\gamma }}} \left( {\frac{{C_{A} }}{{EC_{50A} }} + \frac{{C_{B} }}{{EC_{50B} }}} \right)$$

resulting in

$$E = \left( {E_{max} - E} \right)\left( {\frac{{C_{A} }}{{EC_{50A} }} + \frac{{C_{B} }}{{EC_{50B} }}} \right)^{\gamma } .$$
(66)

Rearranging of Eq. (66) gives the Loewe CET Eq. (29).

Appendix 5: Bliss CET

Diagonality

We have

$$\begin{aligned} E^{Bliss} \left( {\frac{{C_{A} }}{2},\frac{{C_{A} }}{2}} \right) & = \frac{{E_{max} \frac{{C_{A} }}{{2EC_{50A} }} + E_{max} \frac{{C_{A} }}{{2EC_{50A} }} + E_{max} \frac{{C_{A} }}{{4EC_{50A} }}\frac{{C_{A} }}{{EC_{50A} }}}}{{1 + \frac{{C_{A} }}{{2EC_{50A} }} + \frac{{C_{A} }}{{2EC_{50A} }} + \frac{{C_{A}^{2} }}{{4EC_{50A}^{2} }}}} \\ & = \frac{{E_{max} \left( {\frac{{C_{A} }}{{EC_{50A} }} + \frac{{C_{A}^{2} }}{{4EC_{50A}^{2} }}} \right)}}{{1 + \frac{{C_{A} }}{{EC_{50A} }} + \frac{{C_{A}^{2} }}{{4EC_{50A}^{2} }}}} = e\left( {\frac{{C_{A} }}{{EC_{50A} }} + \frac{{C_{A}^{2} }}{{4EC_{50A}^{2} }}} \right) . \\ \end{aligned}$$

Hence, the diagonality condition is satisfied with \(\sigma = \frac{1}{4}\).

Appendix 6: Greco and Summation CET

Diagonality of the Greco CET

For \(\gamma_{A} = \gamma_{B} = 1\) we obtain with Eq. (37)

$$\begin{aligned} E^{Greco} \left( {\frac{{C_{A} }}{2},\frac{{C_{A} }}{2}} \right) & = \frac{{E_{max} \left( {\frac{{C_{A} }}{{2EC_{50A} }} + \frac{{C_{A} }}{{2EC_{50A} }} + \alpha \frac{{C_{A} }}{{4EC_{50A} }}\frac{{C_{A} }}{{EC_{50A} }}} \right)}}{{1 + \frac{{C_{A} }}{{2EC_{50A} }} + \frac{{C_{A} }}{{2EC_{50A} }} + \alpha \frac{{C_{A}^{2} }}{{4EC_{50A}^{2} }}}} \\ & = e\left( {\frac{{C_{A} }}{{EC_{50A} }} + \alpha \frac{{C_{A}^{2} }}{{4EC_{50A}^{2} }}} \right) \\ \end{aligned}$$

and the diagonality condition is fulfilled with \(\sigma = \frac{\alpha }{4}\).

Diagonality of the summation CET

For equal drugs we can compute

$$E^{Sum} \left( {\frac{{C_{A} }}{2},\frac{{C_{A} }}{2}} \right) = 2\frac{{E_{maxA} \frac{{C_{A} }}{{2EC_{50A} }}}}{{1 + \frac{{C_{A} }}{{2EC_{50A} }}}} = 2e\left( {\frac{{C_{A} }}{2}} \right) > e\left( {C_{A} } \right) .$$

Thus, \(E^{Sum} \left( {\frac{{C_{A} }}{2},\frac{{C_{A} }}{2}} \right)\) cannot be written in the form assumed in the diagonality condition. To see the last inequality please note that with

$$f_{1} \left( x \right) = 2e\left( x \right) , \quad f_{2} \left( x \right) = e(2x)$$

we have

$$f_{1} \left( 0 \right) = f_{2} \left( 0 \right) ,$$
$$f_{1}^{{\prime }} \left( x \right) = 2e^{{\prime }} \left( x \right) ,\quad f_{2}^{{\prime }} \left( x \right) = 2e^{{\prime }} \left( {2x} \right) .$$

Since \(e^{{\prime }} \left( x \right) > 0\) and \(e'\) monotone decreasing, \(f_{1} \left( x \right) > f_{2} (x)\), \(x > 0\) follows and with \(x = \frac{{C_{A} }}{2}\) the inequality.

Appendix 7: IDR CETs

Equivalent formulation for the inhibitory CET

To demonstrate the equivalence of Eq. (40) with Eqs. (41)–(42), we have to show

$$i\left( {C_{A} } \right) + i\left( {C_{B} } \right) - i\left( {C_{A} } \right)i\left( {C_{B} } \right) = I^{IDR} \left( {C_{A} ,C_{B} } \right) .$$

The denominator from Eq. (42) can be written as

$$De = \frac{{IC_{50A}^{{\gamma_{A} }} IC_{50B}^{{\gamma_{B} }} + C_{A}^{{\gamma_{A} }} IC_{50B}^{{\gamma_{B} }} + C_{B}^{{\gamma_{B} }} IC_{50A}^{{\gamma_{A} }} + C_{A}^{{\gamma_{A} }} C_{B}^{{\gamma_{B} }} }}{{IC_{50A}^{{\gamma_{A} }} IC_{50B}^{{\gamma_{B} }} }}$$

and the numerator reads

$$Nu = \frac{{I_{maxA} C_{A}^{{\gamma_{A} }} IC_{50B}^{{\gamma_{B} }} + I_{maxB} C_{B}^{{\gamma_{B} }} IC_{50A}^{{\gamma_{A} }} + \left( {I_{maxA} + I_{maxB} - I_{maxA} I_{maxB} } \right)C_{A}^{{\gamma_{A} }} C_{B}^{{\gamma_{B} }} }}{{IC_{50A}^{{\gamma_{A} }} IC_{50B}^{{\gamma_{B} }} }} .$$

Hence, we obtain

$$\begin{aligned} \frac{Nu}{De} & = \frac{{I_{maxA} C_{A}^{{\gamma_{A} }} \left( {IC_{50B}^{{\gamma_{B} }} + C_{B}^{{\gamma_{B} }} } \right) + I_{maxB} C_{B}^{{\gamma_{B} }} \left( {IC_{50A}^{{\gamma_{A} }} + C_{A}^{{\gamma_{A} }} } \right) - I_{maxA} I_{maxB} C_{A}^{{\gamma_{A} }} C_{B}^{{\gamma_{B} }} }}{{\left( {IC_{50A}^{{\gamma_{A} }} + C_{A}^{{\gamma_{A} }} } \right)\left( {IC_{50B}^{{\gamma_{B} }} + C_{B}^{{\gamma_{B} }} } \right)}} \\ & = \frac{{I_{maxA} C_{A}^{{\gamma_{A} }} }}{{\left( {IC_{50A}^{{\gamma_{A} }} + C_{A}^{{\gamma_{A} }} } \right)}} + \frac{{I_{maxB} C_{B}^{{\gamma_{B} }} }}{{\left( {IC_{50B}^{{\gamma_{B} }} + C_{B}^{{\gamma_{B} }} } \right)}} - \frac{{I_{maxA} C_{A}^{{\gamma_{A} }} }}{{\left( {IC_{50A}^{{\gamma_{A} }} + C_{A}^{{\gamma_{A} }} } \right)}}\frac{{I_{maxB} C_{B}^{{\gamma_{B} }} }}{{\left( {IC_{50B}^{{\gamma_{B} }} + C_{B}^{{\gamma_{B} }} } \right)}} . \\ \end{aligned}$$

Diagonality of the stimulation CET

If drug \(A\) equals drug \(B\), we have

$$\begin{aligned} E^{Stim} \left( {\frac{{C_{A} }}{2},\frac{{C_{A} }}{2}} \right) & = \frac{{E_{maxA} \frac{{C_{A} }}{{2EC_{50A} }} + E_{maxA} \frac{{C_{A} }}{{2EC_{50A} }} + \left( {2E_{maxA} + E_{maxA}^{2} } \right)\frac{{C_{A} }}{{4EC_{50A} }}\frac{{C_{A} }}{{EC_{50A} }}}}{{1 + \frac{{C_{A} }}{{2EC_{50A} }} + \frac{{C_{A} }}{{2EC_{50A} }} + \frac{{C_{A}^{2} }}{{4EC_{50A} }}}} \\ & = e\left( {\frac{{C_{A} }}{{EC_{50A} }} + \frac{{C_{A}^{2} }}{{4EC_{50A}^{2} }}} \right) + \frac{{\frac{1}{4}\left( {E_{maxA} + E_{maxA}^{2} } \right)\frac{{C_{A}^{2} }}{{EC_{50A}^{2} }}}}{{1 + \frac{{C_{A} }}{{2EC_{50A} }} + \frac{{C_{A} }}{{2EC_{50A} }} + \frac{{C_{A}^{2} }}{{4EC_{50A} }}}} . \\ \end{aligned}$$

Hence, \(E^{Stim} \left( {\frac{{C_{A} }}{2},\frac{{C_{A} }}{2}} \right)\) cannot be written in form of a single drug effect term. With similar calculations we obtain the same conclusion for \(I^{IDR}\).

Appendix 8: Relationships

To simplify the notation we set

$$x = \left( {\frac{{C_{A} }}{{EC_{50A} }}} \right)^{{\gamma_{A} }} \quad and \quad y = \left( {\frac{{C_{B} }}{{EC_{50B} }}} \right)^{{\gamma_{B} }} .$$

For \(E_{maxA} ,E_{maxB} ,\gamma_{A} ,\gamma_{B} > 0\), Eq. (45) follows from

$$\frac{{E_{maxA} x}}{1 + x + y} + \frac{{E_{maxB} y}}{1 + x + y} < \frac{{E_{maxA} x}}{1 + x} + \frac{{E_{maxB} y}}{1 + y} < \frac{{E_{maxA} x}}{1 + x} + \frac{{E_{maxB} y}}{1 + y} + \frac{{E_{maxA} x}}{1 + x}\frac{{E_{maxB} y}}{1 + y} .$$

In the case of \(E_{maxA} = E_{maxB} = E_{max} > 0\) and \(\gamma_{A} ,\gamma_{B} > 0\) we have

$$E_{max} \frac{x + y}{1 + x + y} < E_{max} \frac{x + y + \eta xy}{1 + x + y + \eta xy}$$
(67)
$$< E_{max} \frac{x + y + 2\eta xy}{1 + x + y + \eta xy}$$
(68)

where \(\eta > 0\) indicates existence of the multiplicative term \(xy\). In Eqs. (46)–(47) the last inequality is obvious. Evaluation of Eq. (67) at \(\eta = 1\) and Eq. (68) at \(\eta = 1\) yields Eq. (46). In the case of \(E_{maxA} = E_{maxB} = E_{max}\) and \(\gamma_{A} = \gamma_{B} = 1\) we obtain Eq. (47) with evaluation of Eq. (67) at \(\eta \in (0,1)\), and \(\eta = 1\) in Eq. (68).

Appendix 9: Optimal concentration pair for half-maximal combination effect

In the following calculation we assume \(\gamma_{A} = \gamma_{B} = \gamma = 1\) and set

$$x = \frac{{C_{A} }}{{EC_{50A} }} , \quad y = \frac{{C_{B} }}{{EC_{50B} }} .$$
(69)

Competitive CET

We assume \(E_{maxB} = E_{maxA} = E_{max} > 0\). Using Eq. (18) by definition of the half maximal effect curve we have to solve

$$E^{Com} \left( {C_{A} ,C_{B} } \right) = \frac{{E_{max} x + E_{max} y}}{1 + x + y} = \frac{{E_{maxAB} }}{2} = \frac{{E_{max} }}{2}$$

which is equivalent to

$$2x + 2y = 1 + x + y .$$

This leads to

$$y = 1 - x$$

and the CET specific function for the half-maximal effect curve reads

$$\varphi_{Com} \left( x \right) = 1 - x .$$
(70)

The next step is to investigate the \(CI\) values on the half-maximal effect curve which is due to Loewe Additivity Eq. (49) given by the objective function

$$h\left( x \right) = x + y = x + \varphi \left( x \right)$$
(71)

with its specific \(\varphi\) under the constraints \(x \ge 0, \varphi \left( x \right) \ge 0\). In case of the competitive CET we obtain

$$h_{Com} \left( x \right) = x + \left( {1 - x} \right) = 1$$
(72)

which gives the solution \(CI^{Loewe} = 1\) and optimal concentration pairs are given by

$$\left( {\bar{x},\bar{y}} \right) = \left( {\frac{{\bar{C}_{A} }}{{EC_{50A} }},\frac{{\bar{C}_{B} }}{{EC_{50B} }}} \right) = \left( {\varepsilon ,1 - \varepsilon } \right), \quad 0 \le \varepsilon \le 1 \;arbitrary .$$

Greco CET

With Eq. (69) we obtain from Eq. (37) with \(E = \frac{{E_{max} }}{2}\)

$$1 = x + y + \alpha xy = x + \left( {1 + \alpha x} \right)y$$

resulting in

$$\varphi_{Greco} \left( x \right) = \frac{1 - x}{1 + \alpha x} , \quad - 1 \le \alpha \le 1 .$$

With Eq. (71) the objective function reads

$$h_{Greco} \left( x \right) = x + \varphi_{Greco} (x)$$

and we calculate

$$h_{Greco}^{'} \left( x \right) = 1 + \frac{{ - \left( {1 + \alpha x} \right) - \left( {1 - x} \right)\alpha }}{{\left( {1 + \alpha x} \right)^{2} }} = 1 + \frac{{ - \left( {1 + \alpha } \right)}}{{\left( {1 + \alpha x} \right)^{2} }} = 0$$

if and only if

$$\left( {1 + \alpha x} \right)^{2} = 1 + \alpha .$$

This leads to

$$\bar{x} = \frac{{\bar{C}_{A} }}{{EC_{50A} }} = \frac{{\sqrt {1 + \alpha } - 1}}{\alpha } , \quad 0 < \left| \alpha \right| \le 1 .$$

Using

$$\varphi_{Greco} \left( {\frac{{\sqrt {1 + \alpha } - 1}}{\alpha }} \right) = \frac{{\sqrt {1 + \alpha } - 1}}{\alpha } = \frac{{\bar{C}_{B} }}{{EC_{50B} }}$$

we obtain

$$CI^{Loewe} = 2\bar{x} = \frac{2}{\alpha }\left( {\sqrt {1 + \alpha } - 1} \right) , \quad 0 < \left| \alpha \right| \le 1 .$$

For \(\alpha = 0\) we have \(h_{Greco} \left( x \right) = x + \varphi_{Greco} \left( x \right) = 1\) which leads to \(CI^{Loewe} = 1\).

Bliss CET

Using Eq. (33) we obtain

$$\frac{x + y + xy}{1 + x + y + xy} = \frac{1}{2}$$

which is equivalent to

$$x + y + xy = 1 .$$
(73)

This leads to

$$\varphi_{Bliss} (x) = \frac{1 - x}{1 + x} .$$

According to Eq. (50) and Eq. (73) the objective function reads

$$h_{Bliss} \left( x \right) = x + y + xy = 1 .$$

We obtain the solution

$$\left( {\bar{x},\bar{y}} \right) = \left( {\varepsilon ,\varphi_{Bliss} \left( \varepsilon \right)} \right) ,\quad 0 \le \varepsilon \le 1$$

with \(CI^{Bliss} = 1\).

Summation CET

With Eq. (69) and \(E_{maxA} = E_{maxB} = E_{max}\) we obtain from Eq. (38)

$$E_{max} \left( {\frac{x}{1 + x} + \frac{y}{1 + y}} \right) = \frac{{E_{maxAB} }}{2} = E_{max} .$$

Rearranging with respect to \(y\)

$$x + y + 2xy = 1 + x + y + xy$$

results in

$$y = \frac{1}{x} = \varphi_{Sum} \left( x \right) .$$

We set with Eq. (50)

$$h_{Sum} \left( x \right) = x + y + xy = x + \varphi_{Sum} \left( x \right) + x\varphi_{Sum} \left( x \right) = x + \frac{1}{x} + 1$$

and obtain

$$h_{Sum}^{'} \left( x \right) = 1 - \frac{1}{{x^{2} }} = 0$$

and therefore

$$\bar{x} = 1 .$$

Hence, we obtain

$$\varphi_{Sum} \left( 1 \right) = 1$$

and the optimal pair is

$$\left( {\bar{x},\bar{y}} \right) = \left( {1,1} \right)$$

with \(CI^{Bliss} = x + y + 1 = 3\). Please note that a classification of the area of antagonistic, additive, or synergistic does not hold since the objective functions Eqs. (49), (50) defining the classifications have to be scaled appropriately, if \(E_{maxAB} > \hbox{max} \left\{ {E_{maxA} ,E_{maxB} } \right\}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, G., Schropp, J. & Jusko, W.J. Assessment of non-linear combination effect terms for drug–drug interactions. J Pharmacokinet Pharmacodyn 43, 461–479 (2016). https://doi.org/10.1007/s10928-016-9490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-016-9490-0

Keywords

Navigation