Skip to main content
Log in

Polyelectrolyte Complexes Between Chitosan and Quince Seed Gum: A Rheological, Structural, and Multiple Dye Adsorption Study

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Natural polyelectrolyte complexes (PECs) have been the subject of interest for scientific research owing to their sustainable potential in a broad variety of advanced technologies. Herein, bio-based and environmental friendly polyelectrolyte complexes (PECs) of Chitosan (CS) and Quince seed gum (QSG) were formed and studied as a function of polyelectrolyte concentration (0.3 and 0.5% w/v) and CS:QSG ratio (1:3, 1:1 and 3:1). Zeta potential and rheological behavior confirmed the formation of the complexes. The maximum electrostatic interaction occurred at the mixing ratio of 1:1 at 0.3% w/v where the zeta potential was − 2.3 mV. All viscoelastic values showed high dependency on mixing ratio and QSG concentration below and above critical entanglement concentration of QSG (0.3% w/v). Immediate gelation and viscoelastic behavior improvement were observed by time and temperature sweep tests. Fourier transform infrared spectroscopy (FTIR) results showed that the inter-biopolymeric complexes were formed through the interaction of –NH3+ and –COO, together with hydrogen bonding. All samples depicted lamellar porous interconnected microstructure (maximum BET surface area of 23.5 m2/g) and three-dimensional sponge-like macrostructure. Without any additional crosslinking, the PEC with higher QSG volume ratio (3:1) and higher concentration (0.5% w/v) exhibited higher Methylene Blue (MB) adsorption capacity (30.88 mg/g) and removal efficiency (77.2%) at practical pH 6.0 than zwitterionic Rhodamine B (RB) and anionic Methyl Orange (MO). The experimental data were in line with the pseudo-second-order (PSO) adsorption kinetic and the Freundlich isotherm model. The eco-friendly CS-QSG PECs can be acted as a promising adsorbent for multiple dye removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Goudar N, Vanjeri VN, Hiremani VD et al (2022) Ionically crosslinked chitosan/tragacanth gum based polyelectrolyte complexes for antimicrobial biopackaging applications. J Polym Environ 30:2419–2434. https://doi.org/10.1007/s10924-021-02354-5

    Article  CAS  Google Scholar 

  2. Meka VS, Sing MKG, Pichika MR et al (2017) A comprehensive review on polyelectrolyte complexes. Drug Discov Today 22:1697–1706. https://doi.org/10.1016/j.drudis.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  3. Iijima K, Ohyama S, Yuyama K et al (2018) Selective fabrication of hollow and solid polysaccharide composite fibers using a microfluidic device by controlling polyion complex formation. Polym J 50:1187–1198. https://doi.org/10.1038/s41428-018-0105-z

    Article  CAS  Google Scholar 

  4. Wu D, Zhu L, Li Y et al (2020) Chitosan-based colloidal polyelectrolyte complexes for drug delivery: a review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116126

    Article  PubMed  PubMed Central  Google Scholar 

  5. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367. https://doi.org/10.1016/j.ijbiomac.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  6. Zhao J, Xing T, Li Q et al (2020) Preparation of chitosan and carboxymethylcellulose-based polyelectrolyte complex hydrogel via SD-A-SGT method and its adsorption of anionic and cationic dye. J Appl Polym Sci 137:1–13. https://doi.org/10.1002/app.48980

    Article  CAS  Google Scholar 

  7. Sonia TA, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. Adv Polym Sci 243:23–54. https://doi.org/10.1007/12_2011_117

    Article  CAS  Google Scholar 

  8. Li T, Liang Y, Wang Z et al (2018) Tissue-engineered scaffold based on carboxymethyl chitin or chitosan for corneal epithelial transplantation. Polym J 50:511–521. https://doi.org/10.1038/s41428-018-0036-8

    Article  CAS  Google Scholar 

  9. Mohammed ASA, Naveed M, Jost N (2021) Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J Polym Environ 29:2359–2371. https://doi.org/10.1007/s10924-021-02052-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bahrudin NN, Nawi MA, Jawad AH, Sabar S (2020) Adsorption characteristics and mechanistic study of immobilized chitosan-montmorillonite composite for methyl orange removal. J Polym Environ 28:1901–1913. https://doi.org/10.1007/s10924-020-01734-7

    Article  CAS  Google Scholar 

  11. Ramakrishnan RK, Padil VVT, Cern M, Varma RS (2021) Eco-friendly and economic, adsorptive removal of cationic and anionic dyes by bio-based Karaya Gum—Chitosan Sponge Rohith. Polymers (Basel) 13:1–21

    Article  Google Scholar 

  12. Abdulhameed AS, Jawad AH, Ridwan M et al (2022) Chitosan/carbon-doped TiO2 composite for adsorption of two anionic dyes in solution and gaseous SO2 capture: experimental modeling and optimization. J Polym Environ. https://doi.org/10.1007/s10924-022-02532-z

    Article  Google Scholar 

  13. Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM (2020) Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int J Biol Macromol 163:756–765. https://doi.org/10.1016/j.ijbiomac.2020.07.014

    Article  CAS  PubMed  Google Scholar 

  14. Putro JN, Lunardi VB, Soetaredjo FE et al (2021) A review of gum hydrocolloid polyelectrolyte complexes (Pec) for biomedical applications: Their properties and drug delivery studies. Processes. https://doi.org/10.3390/pr9101796

    Article  Google Scholar 

  15. Naghshineh N, Tahvildari K, Nozari M (2019) Preparation of chitosan, sodium alginate, gelatin and collagen biodegradable sponge composites and their application in wound healing and curcumin delivery. J Polym Environ 27:2819–2830. https://doi.org/10.1007/s10924-019-01559-z

    Article  CAS  Google Scholar 

  16. Koyyada A, Orsu P (2021) Natural gum polysaccharides as efficient tissue engineering and drug delivery biopolymers. J Drug Deliv Sci Technol 63:102431. https://doi.org/10.1016/j.jddst.2021.102431

    Article  CAS  Google Scholar 

  17. Allafchian A, Jalali SAH, Mousavi SE, Hosseini SS (2020) Preparation of cell culture scaffolds using polycaprolactone/quince seed mucilage. Int J Biol Macromol 155:1270–1276. https://doi.org/10.1016/j.ijbiomac.2019.11.096

    Article  CAS  PubMed  Google Scholar 

  18. Hussain MA, Muhammad G, Haseeb MT, Tahir MN (2019) Quince seed mucilage: a stimuli-responsive/smart biopolymer. Springer, Cham, pp 127–148

    Google Scholar 

  19. Ashraf MU, Hussain MA, Muhammad G et al (2017) A superporous and superabsorbent glucuronoxylan hydrogel from quince (Cydonia oblanga): stimuli responsive swelling, on-off switching and drug release. Int J Biol Macromol 95:138–144. https://doi.org/10.1016/j.ijbiomac.2016.11.057

    Article  CAS  PubMed  Google Scholar 

  20. Ashraf MU, Hussain MA, Bashir S et al (2018) Quince seed hydrogel (glucuronoxylan): evaluation of stimuli responsive sustained release oral drug delivery system and biomedical properties. J Drug Deliv Sci Technol 45:455–465. https://doi.org/10.1016/j.jddst.2018.04.008

    Article  CAS  Google Scholar 

  21. Cetin Genc C, Yilmaz HD, Karaca B et al (2022) Nano-hydroxyapatite incorporated quince seed mucilage bioscaffolds for osteogenic differentiation of human adipose-derived mesenchymal stem cells. Int J Biol Macromol 195:492–505. https://doi.org/10.1016/j.ijbiomac.2021.12.054

    Article  CAS  PubMed  Google Scholar 

  22. Hosseinzadeh H, Mohammadi S (2015) Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions. Carbohydr Polym 134:213–221. https://doi.org/10.1016/j.carbpol.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  23. Guzelgulgen M, Ozkendir-Inanc D, Yildiz UH, Arslan-Yildiz A (2021) Glucuronoxylan-based quince seed hydrogel: a promising scaffold for tissue engineering applications. Int J Biol Macromol 180:729–738. https://doi.org/10.1016/j.ijbiomac.2021.03.096

    Article  CAS  PubMed  Google Scholar 

  24. Rezagholi F, Hashemi SMB, Gholamhosseinpour A et al (2019) Characterizations and rheological study of the purified polysaccharide extracted from quince seeds. J Sci Food Agric 99:143–151. https://doi.org/10.1002/jsfa.9155

    Article  CAS  PubMed  Google Scholar 

  25. Baniasadi H, Polez RT, Kimiaei E et al (2021) 3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks. Int J Biol Macromol 192:1098–1107. https://doi.org/10.1016/j.ijbiomac.2021.10.078

    Article  CAS  PubMed  Google Scholar 

  26. Darvishi E, Kahrizi D, Arkan E et al (2021) Preparation of bio-nano bandage from quince seed mucilage/ZnO nanoparticles and its application for the treatment of burn. J Mol Liq 339:116598. https://doi.org/10.1016/j.molliq.2021.116598

    Article  CAS  Google Scholar 

  27. Sæther HV, Holme HK, Maurstad G et al (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 74:813–821. https://doi.org/10.1016/j.carbpol.2008.04.048

    Article  CAS  Google Scholar 

  28. Kaur J, Kaur G (2018) Optimization of pH conditions and characterization of polyelectrolyte complexes between gellan gum and cationic guar gum. Polym Adv Technol 29:3035–3048. https://doi.org/10.1002/pat.4424

    Article  CAS  Google Scholar 

  29. Afzal S, Maswal M, Dar AA (2018) Rheological behavior of pH responsive composite hydrogels of chitosan and alginate: characterization and its use in encapsulation of citral. Colloids Surf B 169:99–106. https://doi.org/10.1016/j.colsurfb.2018.05.002

    Article  CAS  Google Scholar 

  30. Kaviani A, Zebarjad SM, Javadpour S et al (2019) Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold. Int J Polym Anal Charact 24:191–203. https://doi.org/10.1080/1023666X.2018.1562477

    Article  CAS  Google Scholar 

  31. Jouki M, Mortazavi SA, Yazdi FT, Koocheki A (2014) Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. Int J Biol Macromol 66:113–124. https://doi.org/10.1016/j.ijbiomac.2014.02.026

    Article  CAS  PubMed  Google Scholar 

  32. Jawad AH, Rangabhashiyam S, Abdulhameed AS et al (2022) Process optimization and adsorptive mechanism for Reactive Blue 19 Dye by magnetic crosslinked Chitosan/MgO/Fe3O4 biocomposite. J Polym Environ 30:2759–2773. https://doi.org/10.1007/s10924-022-02382-9

    Article  CAS  Google Scholar 

  33. Alabaraoye E, Achilonu M, Hester R (2018) Biopolymer (Chitin) from various marine seashell wastes: isolation and characterization. J Polym Environ 26:2207–2218. https://doi.org/10.1007/s10924-017-1118-y

    Article  CAS  Google Scholar 

  34. Wang Q, Cui SW (2005) Understanding the physical properties of food polysaccharides. In: Cui SW (ed) Food carbohydrates: chemistry, physical properties, and applications. Taylor & Francis Group LLC, New York, pp 162–214

    Google Scholar 

  35. Zhang B, Bai B, Pan Y et al (2018) Effects of pectin with different molecular weight on gelatinization behavior, textural properties, retrogradation and in vitro digestibility of corn starch. Food Chem 264:58–63. https://doi.org/10.1016/j.foodchem.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  36. Rabelo RS, Tavares GM, Prata AS, Hubinger MD (2019) Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan: effects of pH, polymer ratio and salt concentration. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115120

    Article  PubMed  Google Scholar 

  37. Haddarah A, Bassal A, Ismail A et al (2014) The structural characteristics and rheological properties of Lebanese locust bean gum. J Food Eng 120:204–214. https://doi.org/10.1016/j.jfoodeng.2013.07.026

    Article  CAS  Google Scholar 

  38. Krstonošić V, Jovičić-Bata J, Maravić N, et al (2021) Rheology, structure, and sensory perception of hydrocolloids. In: Food structure and functionality, pp 23–47

  39. Dave PN, Gor A (2018) Natural polysaccharide-based hydrogels and nanomaterials: Recent trends and their applications. Elsevier Inc., Amsterdam

    Book  Google Scholar 

  40. Vignon MR, Gey C (1998) Isolation, 1H and 13C NMR studies of (4-O-methyl-d-glucurono)-d-xylans from luffa fruit fibres, jute bast fibres and mucilage of quince tree seeds. Carbohydr Res 307:107–111. https://doi.org/10.1016/S0008-6215(98)00002-0

    Article  CAS  Google Scholar 

  41. Xie AJ, Yin HS, Liu HM et al (2018) Chinese quince seed gum and poly (N, N-diethylacryl amide-co-methacrylic acid) based pH-sensitive hydrogel for use in drug delivery. Carbohydr Polym 185:96–104. https://doi.org/10.1016/j.carbpol.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  42. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York

    Google Scholar 

  43. Abbastabar B, Azizi MH, Adnani A, Abbasi S (2015) Determining and modeling rheological characteristics of quince seed gum. Food Hydrocoll 43:259–264. https://doi.org/10.1016/j.foodhyd.2014.05.026

    Article  CAS  Google Scholar 

  44. Rubinstein M, Colby RH, Dobrynin AV (1994) Dynamics of semidilute polyelectrolyte solutions. Phys Rev Lett 73:2776–2779. https://doi.org/10.1103/PhysRevLett.73.2776

    Article  CAS  PubMed  Google Scholar 

  45. Gupta D, Jassal M, Agrawal AK (2019) Atypical rheology and spinning behavior of poly(vinyl alcohol) in a nonaqueous solvent. Polym J 51:883–894. https://doi.org/10.1038/s41428-019-0196-1

    Article  CAS  Google Scholar 

  46. Wang Y, Qiu D, Cosgrove T, Denbow ML (2009) A small-angle neutron scattering and rheology study of the composite of chitosan and gelatin. Colloids Surf B 70:254–258. https://doi.org/10.1016/j.colsurfb.2008.12.034

    Article  CAS  Google Scholar 

  47. Erceg T, Brakus G, Stupar A et al (2022) Synthesis and characterization of chitosan-acrylic acid based hydrogels and investigation the properties of bilayered design with incorporated alginate beads. J Polym Environ. https://doi.org/10.1007/s10924-022-02473-7

    Article  Google Scholar 

  48. Huang Z, Yu B, Feng Q et al (2011) In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydr Polym 85:261–267. https://doi.org/10.1016/j.carbpol.2011.02.029

    Article  CAS  Google Scholar 

  49. Zhang W, Jin X, Li H et al (2018) Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydr Polym 186:82–90. https://doi.org/10.1016/j.carbpol.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  50. Anvari M, Pan CH, Yoon WB, Chung D (2015) Characterization of fish gelatin-gum arabic complex coacervates as influenced by phase separation temperature. Int J Biol Macromol 79:894–902. https://doi.org/10.1016/j.ijbiomac.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  51. Jawad AH, Abdulhameed AS, Kashi E et al (2022) Cross-linked chitosan-glyoxal/kaolin clay composite: parametric optimization for color removal and COD reduction of remazol Brilliant Blue R dye. J Polym Environ 30:164–178. https://doi.org/10.1007/s10924-021-02188-1

    Article  CAS  Google Scholar 

  52. Rezagholi F, Mohammad S, Hashemi B, et al Characterizations and rheological study of the purified polysaccharide extracted from quince seeds. https://doi.org/10.1002/j

  53. Lawrie G, Keen I, Drew B et al (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8:2533–2541. https://doi.org/10.1021/bm070014y

    Article  CAS  Google Scholar 

  54. Gierszewska M, Ostrowska-Czubenko J, Chrzanowska E (2018) pH-responsive chitosan/alginate polyelectrolyte complex membranes reinforced by tripolyphosphate. Eur Polym J 101:282–290. https://doi.org/10.1016/j.eurpolymj.2018.02.031

    Article  CAS  Google Scholar 

  55. Yilmaz HD, Cengiz U, Arslan YE et al (2021) From a plant secretion to the promising bone grafts: Cryogels of silicon-integrated quince seed mucilage by microwave-assisted sol–gel reaction. J Biosci Bioeng 131:420–433. https://doi.org/10.1016/j.jbiosc.2020.11.008

    Article  CAS  PubMed  Google Scholar 

  56. Quadrado RFN, Fajardo AR (2020) Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. Arab J Chem 13:2183–2194. https://doi.org/10.1016/j.arabjc.2018.04.004

    Article  CAS  Google Scholar 

  57. Ghaffari A, Navaee K, Oskoui M et al (2007) Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit® RS intended for sigmoidal drug delivery. Eur J Pharm Biopharm 67:175–186. https://doi.org/10.1016/j.ejpb.2007.01.013

    Article  CAS  PubMed  Google Scholar 

  58. Naidu VGM, Madhusudhana K, Sashidhar RB et al (2009) Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr Polym 76:464–471. https://doi.org/10.1016/j.carbpol.2008.11.010

    Article  CAS  Google Scholar 

  59. Maciel VBV, Yoshida CMP, Franco TT (2015) Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr Polym 132:537–545. https://doi.org/10.1016/j.carbpol.2015.06.047

    Article  CAS  PubMed  Google Scholar 

  60. Denuziere A, Ferrier D, Domard A (1996) Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico-Chem Aspects Carbohydr Polym 29:317–323. https://doi.org/10.1016/S0144-8617(96)00035-5

    Article  CAS  Google Scholar 

  61. Bigucci F, Luppi B, Cerchiara T et al (2008) Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur J Pharm Sci 35:435–441. https://doi.org/10.1016/j.ejps.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  62. Aghmiuni AI, Keshel SH, Sefat F, Khiyavi AA (2019) Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.10.008

    Article  Google Scholar 

  63. Brar V, Kaur G (2018) Preparation and characterization of polyelectrolyte complexes of Hibiscus esculentus (Okra) gum and chitosan. Int J Biomater. https://doi.org/10.1155/2018/4856287

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang L, Liu H, Zhu C et al (2018) Chinese quince seed gum: flow behaviour, thixotropy and viscoelasticity. Carbohydr Polym 209:230–238. https://doi.org/10.1016/j.carbpol.2018.12.101

    Article  CAS  Google Scholar 

  65. Yavari Maroufi L, Ghorbani M (2021) Injectable chitosan-quince seed gum hydrogels encapsulated with curcumin loaded-halloysite nanotubes designed for tissue engineering application. Int J Biol Macromol 177:485–494. https://doi.org/10.1016/j.ijbiomac.2021.02.113

    Article  CAS  PubMed  Google Scholar 

  66. Jawad AH, Abdulhameed AS (2020) Facile synthesis of crosslinked chitosan-tripolyphosphate/kaolin clay composite for decolourization and COD reduction of remazol brilliant blue R dye: optimization by using response surface methodology. Colloids Surf A 605:125329. https://doi.org/10.1016/j.colsurfa.2020.125329

    Article  CAS  Google Scholar 

  67. Reghioua A, Barkat D, Jawad AH et al (2021) Parametric optimization by Box-Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4nanocomposite and textile dye removal. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105166

    Article  Google Scholar 

  68. Slyusarenko N, Gerasimova M, Atamanova M et al (2021) Adsorption of eosin Y on polyelectrolyte complexes based on chitosan and arabinogalactan sulfate. Colloids Surf A 610:125731. https://doi.org/10.1016/j.colsurfa.2020.125731

    Article  CAS  Google Scholar 

  69. Thomas RT, Río D, de Vicente JI, Zhang K et al (2022) Size exclusion and affinity-based removal of nanoparticles with electrospun cellulose acetate membranes infused with functionalized cellulose nanocrystals. Mater Des 217:110654. https://doi.org/10.1016/j.matdes.2022.110654

    Article  CAS  Google Scholar 

  70. Yang HC, Gong JL, Zeng GM et al (2017) Polyurethane foam membranes filled with humic acid-chitosan crosslinked gels for selective and simultaneous removal of dyes. J Colloid Interface Sci 505:67–78. https://doi.org/10.1016/j.jcis.2017.05.075

    Article  CAS  PubMed  Google Scholar 

  71. Jawad AH, Abdulhameed AS, Selvasembian R et al (2022) Magnetic biohybrid chitosan-ethylene glycol diglycidyl ether/magnesium oxide/Fe3O4 nanocomposite for textile dye removal: Box-Behnken design optimization and mechanism study. J Polym Res. https://doi.org/10.1007/s10965-022-03067-6

    Article  Google Scholar 

  72. Jawad AH, Abdulhameed AS, Surip SN, Sabar S (2020) Adsorptive performance of carbon modified chitosan biopolymer for cationic dye removal: kinetic, isotherm, thermodynamic, and mechanism study. Int J Environ Anal Chem 00:1–15. https://doi.org/10.1080/03067319.2020.1807966

    Article  CAS  Google Scholar 

  73. Reghioua A, Barkat D, Jawad AH et al (2021) Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: optimization and adsorptive mechanism of remazol Brilliant Blue R dye removal. J Polym Environ 29:3932–3947. https://doi.org/10.1007/s10924-021-02160-z

    Article  CAS  Google Scholar 

  74. Jawad AH, Hameed BH, Abdulhameed AS (2022) Synthesis of biohybrid magnetic chitosan-polyvinyl alcohol/MgO nanocomposite blend for remazol brilliant blue R dye adsorption: solo and collective parametric optimization. Polym Bull. https://doi.org/10.1007/s00289-022-04294-z

    Article  Google Scholar 

  75. Jawad AH, Abdulhameed AS, Wilson LD et al (2021) Fabrication of Schiff’s base chitosan-glutaraldehyde/activated charcoal composite for cationic dye removal: optimization using response surface methodology. J Polym Environ 29:2855–2868. https://doi.org/10.1007/s10924-021-02057-x

    Article  CAS  Google Scholar 

  76. Reghioua A, Barkat D, Jawad AH et al (2021) Synthesis of Schiff’s base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: modeling and mechanism study. Sustain Chem Pharm 20:100379. https://doi.org/10.1016/j.scp.2021.100379

    Article  CAS  Google Scholar 

  77. Zhang Q, Hu XM, Wu MY et al (2019) Synthesis and performance characterization of poly(vinyl alcohol)-xanthan gum composite hydrogel. React Funct Polym 136:34–43. https://doi.org/10.1016/j.reactfunctpolym.2019.01.002

    Article  CAS  Google Scholar 

  78. Kaur K, Jindal R (2019) Comparative study on the behaviour of Chitosan-Gelatin based Hydrogel and nanocomposite ion exchanger synthesized under microwave conditions towards photocatalytic removal of cationic dyes. Carbohydr Polym 207:398–410. https://doi.org/10.1016/j.carbpol.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  79. Iovescu A, Stîngă G, Maxim ME et al (2020) Chitosan-polyglycidol complexes to coating iron oxide particles for dye adsorption. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116571

    Article  PubMed  Google Scholar 

  80. Jayaramudu T, Pyarasani RD, Akbari-Fakhrabadi A et al (2021) Synthesis of gum acacia capped polyaniline-based nanocomposite hydrogel for the removal of methylene blue dye. J Polym Environ 29:2447–2462. https://doi.org/10.1007/s10924-021-02066-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Materials Science and Engineering, Sharif University of Technology, and Department of Polymer Engineering, Amirkabir University of Technology for providing the facility to carry out the work.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Material preparation, methodology, data collection and analysis were performed by AK, GP and RB. The first draft of the manuscript was written by AK. The supervision, validation and writing—review and editing of the manuscript were done by GP. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gholamreza Pircheraghi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 274 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaviani, A., Pircheraghi, G., Bagheri, R. et al. Polyelectrolyte Complexes Between Chitosan and Quince Seed Gum: A Rheological, Structural, and Multiple Dye Adsorption Study. J Polym Environ 31, 852–869 (2023). https://doi.org/10.1007/s10924-022-02634-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02634-8

Keywords

Navigation