Skip to main content
Log in

Biopolymer (Chitin) from Various Marine Seashell Wastes: Isolation and Characterization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitin has been produced from different sea waste sources including, molluscs (mussel and oyster shell), crustacean (prawn and crab) and fish scale (pang and silver scales) using deproteinization and demineralization as chemical methods. The conditions of chemical extraction process determine the quality of chitin. The obtained results revealed that, about 1 and 10% HCl and NaOH were adequate concentrations for deproteinization and demineralization process respectively. Chitin from oyster and crab shell waste had the highest yield of 69.65 and 60.00% while prawn, mussel shell, pang and silver scales had the lowest yield of 40.89, 35.03, 35.07 and 31.11% respectively. Chitin solubility is controlled by the quantity of protonated acetyl groups within the polymeric chain of the chitin backbone, thus on the percentage of acetylated and non-acetylated d-glucos-acetamide unit. Good solubility results were obtained in mussel, oyster and crab shells respectively. The chitin molecular weight characteristics and activity are controlled by the degree of acetylation (DA) and the distribution of acetyl group extending in the polymer chain. DA is determined by acid-base titration methods and molecular weight determined by Brookfield viscometry. Both methods are found to be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  2. Rout SK (2001) Physicochemical, Functional, and Spectroscopic analysis of crawfish chitin and chitosan as affected by process modification. Dissertation 1–99

  3. Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym, 46(1):1–27

    Article  CAS  Google Scholar 

  4. Hsu CH, Jui lien H, Chen RH (2004) Wastewater treatment with chitosan

  5. Austin PR, Brine CJ, Castle JE, Zikakis JP (1981) Chitin: new facets of research, Science 212(4496):749–753

    Article  CAS  PubMed  Google Scholar 

  6. Knorr D 1984. Use of chitinous polymers in food. Food Technol 38(1):85–97

    CAS  Google Scholar 

  7. No HK, Meyers SP 1989. Crawfish as a coagulant in recovery of organic compounds from sea food processing streams. J Agric Food Chem 37(3):580–583

    Article  CAS  Google Scholar 

  8. Capozza RC (1975) German Patent 2,505,305

  9. Yoon GL, Kim BT, Kim BO, Han SH (2003) Chemical–mechanical characteristics of crushed oyster-shell. Waste Manage 23(9):825–834

    Article  CAS  Google Scholar 

  10. Martino AD, Sittinger M, Risbud MV 2005. Chitossan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26(30):5983–5990

    Article  CAS  PubMed  Google Scholar 

  11. Dhanaraj SA, Selvadurai M, Santhi K, Hui ALS, Wen CJ, Teng HC (2014) Targeted drug delivery system: formulation and evaluation of chitosan nanospheres containing doxorubicin hydrochloride. Int J Drug Deliv 6(2):186–193

    CAS  Google Scholar 

  12. Rinaudo M (2014) Materials based on chitin and chitosan. In: Kabasci S (ed) Bio-based plastics. Wiley, Chichester, pp 63–80

    Google Scholar 

  13. Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods—A review. Food Technol Biotech 51(1):12–25

    Google Scholar 

  14. Gortari MC, Hours RA (2013) Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electron J Biotechnol 16(3):14–14

    Google Scholar 

  15. Younes I, Ghorbel-Bellaaj O, Nasri R, Chaabouni M, Rinaudo M, Nasri M (2012) Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem 47(12):2032–2039

    Article  CAS  Google Scholar 

  16. Kaur S, Dhillon GS 2015. Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol 35(1):44–61

    Article  CAS  PubMed  Google Scholar 

  17. Ghorbel-Bellaaj O, Younes I, Maalej H, Hajji S, Nasri M (2012) Chitin extraction from shrimp shell waste using Bacillus bacteria. Int J Biol Macromol 51(5):1196–1201

    Article  CAS  PubMed  Google Scholar 

  18. Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, Jellouli K (2014) Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol 65:298–306

    Article  CAS  PubMed  Google Scholar 

  19. Blair HS, Guthrie J, Law TK, Turkington P (1987) Chitosan and modified chitosan membranes. Preparation and characterization. J Appl Polym Sci 33(2):641–656

    Article  CAS  Google Scholar 

  20. Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7):567–575

    Article  CAS  PubMed  Google Scholar 

  21. Abdulkarim A, Isa AMT, Abdulsalam S, Muhammad AJ, Ameh AO (2013) Extraction and Characterization of Chitin and Chitosan from Mussel shell, Civil Environ Res 3(2):108–114

    Google Scholar 

  22. Domard A, Rinaudo M (1983) Preparation and characterization of fully deacetylated chitosan. Int J Biol Macromol 5(1):49–52

    Article  CAS  Google Scholar 

  23. Brine CJ, Austin PR (1981) Chitin variability with species and method of preparation. Comp Biochem Physiol B69:283–286

    Google Scholar 

  24. Wang W, Bo SQ, Li SQ, Qin W (1991) Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation. Int J Biol Macromol 13(5):281–285

    Article  CAS  PubMed  Google Scholar 

  25. Terbojevidh M, Cosani A (1997) Molecular weight determination of chitin and chitosan. In: Muzzarelli R. A. A., Peter MG (eds) Chitin handbook. European Chitin Society, pp 87–101

  26. No HK, Hur EY (1998) Control of foam formation by antifoam during demineralization of crustacean shell in preparation of chitin. J Agric Food Chem 46(9):3844–3846

    Article  CAS  Google Scholar 

  27. Percot A, Viton C, Domard A (2003) Characterization of Shrimp shell deproteinization. Biomacromolecules 4(5):1380–1385

    Article  CAS  PubMed  Google Scholar 

  28. Moorjani MN, Achutha V, Khasim DL (1975) Parameters affecting the viscosity of chitosan from prawns waste. J Food Sci Technol 12:187–189

    CAS  Google Scholar 

  29. Abdou ES, Nagy KS, Elsabee MZ (2008) Extraction and charscterization of chitin and chitosan from local sources. Bioresour Technol 99(5):1359–1367

    Article  CAS  PubMed  Google Scholar 

  30. Kifune K, Inome K, Mori S (1990) Chitin fibers and process for the production of the same, US patent 4,932,404

  31. Urbariczyk GB, Lipp-Symonowicz B, Jeziorny A, Doran K, Wrzosek K, Urbaniak-Domagala H, Kowalska WS (1997) Progress on chemistry and application of chitin and its derivatives. Biomaterials 3:186–187

    Google Scholar 

  32. Maghami GG, Roberts GA (1988) Studies on the adsorption of anionic dyes on chitosan. Macromol Chem 189(10):2239–2243

    Article  CAS  Google Scholar 

  33. Brine CJ, Austin PR (1975) Renatured chitin fibrils, film and filamnets. In Marine chemistry in coastal environment, church, T.D., Ed.; ACS symposium series 18; American Chemical Society: Washington, DC, pp 505–518

    Chapter  Google Scholar 

  34. Austin PR (1975) Solvent for and purification of chitin. US patent 3,892,731; and Austin, P.R, 1975 Purification of chitin, US patent 3,879,377

  35. Kifune K, Inome K, Mori S (1984) Process for the production of chitin fibers, US patent 4,431,601

  36. Tokura S, Seo H (1984) Manufacture of chitosan fiber and film. Japanese patent 59116418

  37. Unitika Co. Ltd. Chitin powder and its production. Japanese Patent, p 57139101

  38. Bough WA, Salter WL, Wu ACM, Perkins BE 1978. Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. I. Chemical composition, viscosity, and molecular-weight distribution of chitosan products. Biotech Bioeng 20(12):1931–1943

    Article  CAS  Google Scholar 

  39. Fernandez-Kim BS (2004) The molecular weight of native chitin usually larger than one million Daltons, pp 1–99

  40. Li Q, Dunn ET, Grandmaison EW, Goosen MF 1992. Application and properties of chitosan. Bioactive Compatible Polym 7(4):370–397

    Article  CAS  Google Scholar 

  41. Islam S, Bhuiyan MR, Islam MN (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering., J Polym Environ 25(3):854–866

    Article  CAS  Google Scholar 

  42. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. structure, properties and applications. Mar Drugs 13(3):1133–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Varum KM, Myhr MM, Hjerde RJ, SmidsrodIn O (1997) vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 299(1–2):99–101

    Article  CAS  PubMed  Google Scholar 

  44. Sathirakul K, How NC, Stevens WF, Chandrkrachang S (1995) Application of chitin and chitosan bandages for wound healing. First International Conference of the European Chitin Society, Advances in Chitin Science. Brest, pp 490–492

  45. Hidaka Y, Ito M, Mori K, Yagasaki H, Kafrawy AH (1999). Histopathological and immunohistochemical studies of membranes of deacetylated chitin derivatives implanted over rat calvaria. J Biomed Mater Res 46(3):418–423

    Article  CAS  PubMed  Google Scholar 

  46. George AFR (1992) Solubility and solution behaviour of Chitin and Chitosan. Chitin Chemistry, pp 274–329

  47. Nielsen National Oceanic and Atmospheric Administration (NOAA) (1998) Chemical Contaminants in Oysters and Mussels” by Tom O’Connor. NOAA’s State of the Coast Report. NOAA, Silver Spring, MD

    Google Scholar 

  48. ̧Aygul K, Mehmet C, Yasemen Y, Beyza E, Mustafa C (2006) Proximate composition and mineral contents of the blue crab (Callinectes sapidus) breast meat, claw meat and hepatopancreas. Inter J Food Sci Technol 41(9):1023–1026

    Article  CAS  Google Scholar 

  49. Ruth HR,.Aslak E, Kjell MV (2008) A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr Polym 71(3):388–393

    Article  CAS  Google Scholar 

  50. Nakano T, Ikawa NI, Ozimek L (2003) Chemical composition of chicken egg shell and shell membranes. Poult Sci 82:510–514

    Article  CAS  PubMed  Google Scholar 

  51. Ferrer J, Paez G, Marmol Z, Ramones E, Garcia H, Forster CF (1996) Acid hydrolysis of shrimp-shell wastes and the production of single cell protein from the hydrolysate. Bioresour Technol 57(1):55–60

    Article  CAS  Google Scholar 

  52. Gildberg A, Stenberg E (2001) A new process for advanced utilisation of shrimp waste. Process Biochem 36:(8–9):809–812

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernestine Alabaraoye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alabaraoye, E., Achilonu, M. & Hester, R. Biopolymer (Chitin) from Various Marine Seashell Wastes: Isolation and Characterization. J Polym Environ 26, 2207–2218 (2018). https://doi.org/10.1007/s10924-017-1118-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1118-y

Keywords

Navigation