Skip to main content
Log in

Ionically Crosslinked Chitosan/Tragacanth Gum Based Polyelectrolyte Complexes for Antimicrobial Biopackaging Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The novel polyelectrolyte complexes (PEC) were prepared by mixing different Wt% of Tragacanth gum (TG) to Chitosan (CS) and systematic evaluation of multifunctional properties of colloidal solution and films was carried out. The formation of PEC was dependant on the order of mixing of solutions. Particle size analysis, Zeta potential and FTIR confirmed the formation of PEC. SEM studies revealed the homogeneous distribution of colloidal particles on the surface. Contact angle analysis, water solubility, and moisture adsorption studies revealed the hydrophobicity of films. Further, the water vapor transmission rate and oxygen permeability of the control film was improved significantly and found to be in the range of polyethylene terephthalate by ionic crosslinking of TG and CS. Ionic crosslinking significantly enhanced antibacterial, antioxidant activity and rate of degradation in soil. Obtained biofilms exhibited far better preservation ability than commercial polyethylene films. Hence, biofilms could be used in antimicrobial packaging applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Roy S, Rhim JW (2020) Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloid Surf B 188:110761

    Article  CAS  Google Scholar 

  2. Porta R, Sabbah M, Di Pierro M (2020) Biopolymers as food packaging materials. Int J Mol Sci 21:4942

    Article  PubMed Central  Google Scholar 

  3. Kumar D, Kumar P, Pandey J (2018) Binary grafted chitosan film: Synthesis, characterization, antibacterial activity and prospects for food packaging. Int J Biol Macromol 115:341–348

    Article  CAS  PubMed  Google Scholar 

  4. Minkal Ahuja M, Bhatt DC (2018) Polyelectrolyte complex of carboxymethyl gum katira- chitosan: preparation and characterization. Int J Biol Macromol 106:1184–1191

    Article  PubMed  CAS  Google Scholar 

  5. Chen P, Xie F, Tang F, McNally T (2020) Structure and properties of thermomechanically processed chitosan/carboxymethylcellulose/graphene oxide polyelectrolyte complexed bionanocomposites. Int J Biol Macromol 158:420–429

    Article  CAS  PubMed  Google Scholar 

  6. Evangelista TFS, Andrade GRS, Nascimento KNS, Santos SBD, Santos MFC, Montes D’Oca CDR, Estevam CDS, Gimenez IF, Almeida LE (2020) Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release. Carbohydr Polym 245:116592

    Article  CAS  PubMed  Google Scholar 

  7. Bravo-Anaya LM, Fernández-Solís KG, Rosselgong J, Nano-Rodríguez JLE, Carvajal F, Rinaudo M (2019) Chitosan-DNA polyelectrolyte complex: Influence of chitosan characteristics and mechanism of complex formation. Int J Biol Macromol 126:1037–1049

    Article  CAS  PubMed  Google Scholar 

  8. Bonilla J, Fortunati E, Atarés L, Chiralt A, Kenny JM (2014) Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocoll 35:463–470

    Article  CAS  Google Scholar 

  9. Haghighi H, Leugoue SK, Pfeifer F, Siesler HW, Licciardello F, Fava P, Pulvirenti A (2019) Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocoll 100:105419

    Article  CAS  Google Scholar 

  10. Qin Y, Liu Y, Yong YL, Liu HJ (2019) Preparation and characterization of antioxidant, antimicrobial and pH sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll 96:102–111

    Article  CAS  Google Scholar 

  11. Yuvaraja G, Pathak JL, Weijiang Z, Yaping Z, Jiao X (2017) Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol 103:234–241

    Article  CAS  Google Scholar 

  12. Aramwit P, Siritientong T, Sb K, Srichana T (2010) Formulation and characterization of silk sericin–PVA scaffold crosslinked with genipin. Int J Biol Macromol 47:668–675

    Article  CAS  PubMed  Google Scholar 

  13. Das A, Uppaluri R, Das C (2019) Feasibility of poly-vinyl alcohol/starch/glycerol/citric acid composite films for wound dressing applications. Int J Biol Macromol 131:998–1007

    Article  CAS  PubMed  Google Scholar 

  14. Saether HV, Holme HK, Maurstad G, Smidsrød O, Stokke BT (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 74:813–821

    Article  CAS  Google Scholar 

  15. S¸en F, Uzunsoy I, Bastürka E, Kahraman MV (2017) Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials. Carbohydr Polym 170:264–270

    Article  CAS  Google Scholar 

  16. Ostrowska-Czubenko J, Gierszewska-Druzyn-ska M (2009) Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr Polym 77:590–598

    Article  CAS  Google Scholar 

  17. Chi K, Catchmark JM (2018) improved eco-friendly barrier materials based on crystalline nanocellulose/chitosan/carboxymethyl cellulose polyelectrolyte complexes. Food Hydrocoll 80:195–205

    Article  CAS  Google Scholar 

  18. Janani N, Zare EN, Salimi F, Makvandi P (2020) Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging. Carbohydr Polym 247:116678

    Article  CAS  PubMed  Google Scholar 

  19. Zare EN, Makvandi P, Tay FR (2019) Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr Polym 212:450–467

    Article  CAS  Google Scholar 

  20. Goudar N, Vanjeri VN, Dixit S, Hiremani V, Sataraddi S, Gasti T, Vootla SK, Masti SP, Chougale RB (2020) Evaluation of multifunctional properties of gallic acid crosslinked Poly (vinyl alcohol)/Tragacanth Gum blend films for food packaging applications. Int J Biol Macromol 158:139–149

    Article  CAS  PubMed  Google Scholar 

  21. Vanjeri VN, Goudar N, Kasai D, Masti SP, Chougale RB (2019) Thermal and tensile properties study of 4-Hydroxycoumarin doped Polyvinyl alcohol/Chitosan blend films. Chem Data Coll 23:100257

    CAS  Google Scholar 

  22. Wasupalli GK, Verma D (2018) Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate based polyelectrolyte complexes. Int J Biol Macromol 114:10–17

    Article  CAS  PubMed  Google Scholar 

  23. Yin Y, Li Z, Sun Y, Yao K (2005) A preliminary study on chitosan/gelatin polyelectrolyte complex formation. J Mater Sci 40:4649–4652

    Article  CAS  Google Scholar 

  24. Kulkarni AD, Vanjari YH, Sancheti KH, Patel HM, Belgamwar VS, Surana SJ, Pardeshi CV (2016) Polyelectrolyte complexes: mechanisms, critical experimental aspects, and applications. Artif Cells Nanomed Biotechnol 44:1615–1625

    Article  CAS  PubMed  Google Scholar 

  25. Meka VS, Singh MKG, Pichika MR, Nali SR, Kolapalli VRM, Kesharwani P (2017) A comprehensive review on polyelectrolyte complexes, Drug Discov. Today 22:1697–1706

    CAS  Google Scholar 

  26. Yuan Y, Huang Y (2019) Ionically crosslinked polyelectrolyte nanoparticle formation mechanisms: the significance of mixing. Soft Matter 15:9871

    Article  CAS  PubMed  Google Scholar 

  27. Shankar S, Reddy JP, Rhim JW (2015) Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. Int J Biol Macromol 81:267–273

    Article  CAS  PubMed  Google Scholar 

  28. Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Ojagh SM, Hosseini SM, Khaksar R (2013) Characterization of antioxidant-antimicrobial k-carrageenan films containing Satureja hortensis essential oil. Int J Biol Macromol 52:116–124

    Article  CAS  PubMed  Google Scholar 

  29. Sarwar MS, Niazi MKB, Zaib J, Tahir A, Arshad H (2018) Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr Polym 184:453–464

    Article  CAS  PubMed  Google Scholar 

  30. Yadav S, Mehrotra GK, Bhartiya P, Singh A, Dutta PK (2020) Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr Polym 227:115348

    Article  CAS  PubMed  Google Scholar 

  31. Coimbra P, Ferreiraa P, de Sousa HC, Batista P, Rodrigues MA, Correia IJ, Gil MH (2011) Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Int J Biol Macromol 48:112–118

    Article  CAS  PubMed  Google Scholar 

  32. Ferreira AS, Nunes C, Castro A, Ferreira P, Coimbra MA (2014) Influence of grape pomace extract incorporation on chitosan films properties. Carbohydr Polym 113:490–499

    Article  CAS  PubMed  Google Scholar 

  33. Ghaderi J, Hosseini SF, Keyvani N, Gómez-Guillén MC (2019) Polymer blending effects on the physicochemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocoll 95:122–132

    Article  CAS  Google Scholar 

  34. Wang H, Zhang R, Zhang H, Jiang S, Liu H, Sun M, Jiang S (2015) Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol). Carbohydr Polym 127:64–71

    Article  CAS  PubMed  Google Scholar 

  35. Briones AV, Sato T (2010) Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan–carrageenan. React Funct Polym 70:19–27

    Article  CAS  Google Scholar 

  36. Naveen Kumara HMP, Prabhakar MN, Venkata Prasad C, Madhusudhan Rao K, Ashok Kumar Reddy TV, Chowdoji Rao K, Subha MCS (2010) Compatibility studies of chitosan/PVA blend in 2% aqueous acetic acid solution at 30 C. Carbohydr Polym 82:251–255

    Article  CAS  Google Scholar 

  37. Zhuang PY, Li YL, Fan L, Lin J, Hu QL (2012) Modification of chitosan membrane with poly(vinyl alcohol) and biocompatibility evaluation. Int J Biol Macromol 50:658–663

    Article  CAS  PubMed  Google Scholar 

  38. Nur Hanani ZA, Aelma Husna AB, Syahida SN, Nor Khaizura MAB, Jamilah B (2018) Effect of different fruit peels on the functional properties of gelatin/polyethylene bilayer films for active packaging. Food Packag Shelf Life 18:201–211

    Article  Google Scholar 

  39. Gasti T, Dixit S, Sataraddi SP, Hiremani VD, Masti SP, Chougale RB, Malabadi RB (2020) Physicochemical and biological evaluation of different extracts of edible Solanum nigrum L. leaves incorporated chitosan/poly (vinyl alcohol) composite films. J Polym Environ 28:2918–2930

    Article  CAS  Google Scholar 

  40. Hiremani V, Sataraddi S, Bayannavar PK, Gasti T, Masti SP, Kamble RR, Chougale RB (2020) Mechanical, optical and antioxidant properties of 7-Hydroxy-4-methyl coumarin doped polyvinyl alcohol/oxidized maize starch blend films. SN Appl Sci 2:1877

    Article  CAS  Google Scholar 

  41. Tonyali B, Cikrikci S, Oztopa MH (2018) Physicochemical and microstructural characterization of gum tragacanth added whey protein based films. Food Res Int 105:1–9

    Article  CAS  PubMed  Google Scholar 

  42. Kanatt SR, Rao MS, Chawla SP, Sharma A (2012) Active chitosan-polyvinyl alcohol films with natural extracts. Food Hydrocoll 29:290–297

    Article  CAS  Google Scholar 

  43. Yu Z, Li B, Chu J, Zhang P (2018) Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr Polym 184:214–220

    Article  CAS  PubMed  Google Scholar 

  44. Kouchak M, Ameri A, Naseri B, Boldaji SK (2014) Chitosan and polyvinyl alcohol composite films containing nitrofurazone: preparation and evaluation. Iran J Basic Med Sci 17:14–20

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li S, Ma Y, Ji T, Sameen DE, Ahmed S, Qin W, Dai J, Li S, Liu Y (2020) Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr Polym 248:116805

    Article  CAS  PubMed  Google Scholar 

  46. Kanikireddy V, Varaprasad K, Rani MS, Venkataswamy P, Jagan Mohan Reddy B, Vithal M (2020) Biosynthesis of CMC-Guar gum-Ag0 nanocomposites for inactivation of food pathogenic microbes and its effect on the shelf life of strawberries. Carbohydr Polym 236:116053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the author NG thanks the Council of Scientific and Industrial Research (CSIR) New Delhi, for the financial assistance. Authors also acknowledges the University Scientific and Instruments Centre (USIC), DST-SAIF, DST-PURSE PHASE II, Karnatak University, Dharwad, for providing necessary instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra B. Chougale.

Ethics declarations

Conflict of interest

On behalf of all the co-authors, the corresponding author declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudar, N., Vanjeri, V.N., Hiremani, V.D. et al. Ionically Crosslinked Chitosan/Tragacanth Gum Based Polyelectrolyte Complexes for Antimicrobial Biopackaging Applications. J Polym Environ 30, 2419–2434 (2022). https://doi.org/10.1007/s10924-021-02354-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02354-5

Keywords

Navigation