Skip to main content

Advertisement

Log in

Thermal, Mechanical and Physical Properties of Composite Films Developed from Seaweed Polysaccharides/Cellulose Nanofibers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Algae-based materials appear to be promising substitutes for plastics in many applications due to their eco-friendly belongings. However, high solubility, thermal stability, and mechanical strength are still challenges. This work evaluated K-Carrageenan/Alginate films (Kc/Alg) reinforced with cellulose nanofibers (CNF) according to their thermal, mechanical, and morphological aspects. Scanning electron microscopy revealed a CNF entanglement and improved dispersion along the matrices showing a basic one-phase microstructure. This structure determines the enhanced properties such as water solubility, thermal stability, and mechanical resistance. In addition, we achieved the maximal tensile strength of 58.9 MPa for CNF-composite without the addition of plasticizers. These results indicate Kc/Alg/CNF nanocomposites can be a suitable alternative material for coating applications such as packages, carrier vehicles for medication, and nutrients.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ye Z, Ma P, Tang M et al (2017) Interactions between calcium alginate and carrageenan enhanced mechanical property of a natural composite film for general packaging application. Polym Bull 74:3421–3429. https://doi.org/10.1007/s00289-016-1894-x

    Article  CAS  Google Scholar 

  2. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374. https://doi.org/10.1016/j.carbpol.2015.10.074

    Article  CAS  PubMed  Google Scholar 

  3. Paula GA, Benevides NMB, Cunha AP et al (2015) Development and characterization of edible films from mixtures of κ-carrageenan, ι-carrageenan, and alginate. Food Hydrocoll 47:140–145. https://doi.org/10.1016/j.foodhyd.2015.01.004

    Article  CAS  Google Scholar 

  4. Pasini Cabello SD, Mollá S, Ochoa NA et al (2014) New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. J Power Sour 265:345–355. https://doi.org/10.1016/j.jpowsour.2014.04.093

    Article  CAS  Google Scholar 

  5. Yu F, Cui T, Yang C et al (2019) Κ-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity. Chemosphere 237:124417. https://doi.org/10.1016/j.chemosphere.2019.124417

    Article  CAS  PubMed  Google Scholar 

  6. Guzmanj De, Dela Peña K, Ytac Dorothy J, Tumolva T (2020) Synthesis and characterization of ionically-crosslinked κ-carrageenan/sodium alginate/carboxymethyl cellulose hydrogel blends for soil water retention and fertilizer release. Solid State Phenom 304 SSP:59–65. https://doi.org/10.4028/www.scientific.net/ssp.304.59

    Article  Google Scholar 

  7. Kulkarni RV, Baraskar VV, Setty CM, Sa B (2011) Interpenetrating polymer network matrices of sodium alginate and carrageenan for controlled drug delivery application. Fibers Polym 12:352–358. https://doi.org/10.1007/s12221-011-0352-5

    Article  CAS  Google Scholar 

  8. Lencina MMS, Andreucetti NA, Gómez CG, Villar MA (2013) Recent studies on alginates based blends, composites, and nanocomposites. Adv Nat Polym. Springer, Berlin, Heidelberg, pp 193–254

    Chapter  Google Scholar 

  9. Pawar SN, Edgar KJ (2012) Biomaterials alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305. https://doi.org/10.1016/j.biomaterials.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  10. Pereira L, Ribeiro-Claro PJA (2013) Analysis by vibrational spectroscopy of seaweed with potential use in food, pharmaceutical and cosmetic industries. Int J Carbohydr Chem. https://doi.org/10.1201/b17540

    Article  Google Scholar 

  11. Zhang Y-H, Shao Y, Jiao C et al (2020) Characterization and application of an alginate lyase, Aly1281 from marine bacterium Pseudoalteromonas carrageenovora ASY5. Mar Drugs 18:95. https://doi.org/10.3390/md18020095

    Article  CAS  PubMed Central  Google Scholar 

  12. Zia KM, Tabasum S, Nasif M et al (2017) A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 96:282–301. https://doi.org/10.1016/j.ijbiomac.2016.11.095

    Article  CAS  PubMed  Google Scholar 

  13. Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77:167–180. https://doi.org/10.1016/j.carbpol.2009.01.020

    Article  CAS  Google Scholar 

  14. Moustafa H, Darwish NA, Youssef AM (2022) Rational formulations of sustainable polyurethane/chitin/rosin composites reinforced with ZnO-doped-SiO2 nanoparticles for green packaging applications. Food Chem 371:131193. https://doi.org/10.1016/j.foodchem.2021.131193

    Article  CAS  PubMed  Google Scholar 

  15. El-Sayed HS, El-Sayed SM, Mabrouk AMM et al (2021) Development of eco-friendly probiotic edible coatings based on chitosan, alginate and carboxymethyl cellulose for improving the shelf life of UF soft cheese. J Polym Environ 29:1941–1953. https://doi.org/10.1007/s10924-020-02003-3

    Article  CAS  Google Scholar 

  16. Elnaggar M, Shalaby E, Abd-Al-Aleem A-A-A, Youssef A (2021) Nanomaterials and nanofibers as wound dressing mats: an overview of the fundamentals, properties and applications. Egypt J Chem. https://doi.org/10.21608/ejchem.2021.91351.4345

    Article  Google Scholar 

  17. Badawy AA, Ghanem AF, Yassin MA et al (2021) Utilization and characterization of cellulose nanocrystals decorated with silver and zinc oxide nanoparticles for removal of lead ion from wastewater. Environ Nanatechnol Monit Manag 16:100501. https://doi.org/10.1016/j.enmm.2021.100501

    Article  CAS  Google Scholar 

  18. Nechita P, Roman M (2020) Review on polysaccharides used in coatings for food packaging papers. Coatings 10:566. https://doi.org/10.3390/coatings10060566

    Article  CAS  Google Scholar 

  19. Miao C, Hamad WY (2019) Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites. Curr Opin Solid State Mater Sci 23:0–1. https://doi.org/10.1016/j.cossms.2019.06.005

    Article  CAS  Google Scholar 

  20. Abdul Khalil HPS, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. https://doi.org/10.1016/j.carbpol.2013.08.069

    Article  CAS  PubMed  Google Scholar 

  21. Abdul Khalil HPS, Chong EWN, Owolabi FAT et al (2019) Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: a review. J Appl Polym Sci 136:47251. https://doi.org/10.1002/app.47251

    Article  CAS  Google Scholar 

  22. Benselfelt T, Engström J, Wågberg L (2018) Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties. Green Chem 20:2558–2570. https://doi.org/10.1039/c8gc00590g

    Article  CAS  Google Scholar 

  23. Savadekar NR, Karande VS, Vigneshwaran N et al (2012) Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. Int J Biol Macromol 51:1008–1013. https://doi.org/10.1016/j.ijbiomac.2012.08.014

    Article  CAS  PubMed  Google Scholar 

  24. El Achaby M, Kassab Z, Barakat A, Aboulkas A (2018) Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: application for improving the tensile properties of biopolymer nanocomposite films. Ind Crops Prod 112:499–510. https://doi.org/10.1016/j.indcrop.2017.12.049

    Article  CAS  Google Scholar 

  25. Cernencu AI, Lungu A, Dragusin D et al (2017) Design of cellulose–alginate films using PEG/NaOH aqueous solution as co-solvent. Cellulose 24:4419–4431. https://doi.org/10.1007/s10570-017-1412-9

    Article  CAS  Google Scholar 

  26. Hasan M, Lai TK, Gopakumar DA et al (2019) Micro crystalline bamboo cellulose based seaweed biodegradable composite films for sustainable packaging material. J Polym Environ 27:1602–1612. https://doi.org/10.1007/s10924-019-01457-4

    Article  CAS  Google Scholar 

  27. Naidu DS, John MJ (2021) International journal of biological macromolecules cellulose nano fibrils reinforced xylan-alginate composites: mechanical, thermal and barrier properties. Int J Biol Macromol 179:448–456. https://doi.org/10.1016/j.ijbiomac.2021.03.035

    Article  CAS  PubMed  Google Scholar 

  28. Sirviö JA, Kolehmainen A, Liimatainen H et al (2014) Biocomposite cellulose-alginate films: promising packaging materials. Food Chem 151:343–351. https://doi.org/10.1016/j.foodchem.2013.11.037

    Article  CAS  PubMed  Google Scholar 

  29. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  30. Paşcalău V, Popescu V, Popescu GL et al (2012) The alginate/k-carrageenan ratio’s influence on the properties of the cross-linked composite films. J Alloys Compd 536:S418–S423. https://doi.org/10.1016/j.jallcom.2011.12.026

    Article  CAS  Google Scholar 

  31. Xu JB, Bartley JP, Johnson RA (2003) Preparation and characterization of alginate-carrageenan hydrogel films crosslinked using a water-soluble carbodiimide (WSC). J Memb Sci 218:131–146. https://doi.org/10.1016/S0376-7388(03)00165-0

    Article  CAS  Google Scholar 

  32. Smitha B, Sridhar S, Khan AA (2005) Chitosan—sodium alginate polyion complexes as fuel cell membranes. Eur Polym 41:1859–1866. https://doi.org/10.1016/j.eurpolymj.2005.02.018

    Article  CAS  Google Scholar 

  33. Sartori C (1997) The characterisation of alginate systems for biomedical applications. Ph.D. – Department of Materials Engineering. Brunei University, 1997

  34. Martins JT, Cerqueira MA, Bourbon AI et al (2012) Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll 29:280–289. https://doi.org/10.1016/j.foodhyd.2012.03.004

    Article  CAS  Google Scholar 

  35. Wanchoo RK, Sharma PK (2003) Viscometric study on the compatibility of some water-soluble polymer— polymer mixtures. Eur Polym J 39:1481–1490. https://doi.org/10.1016/S0014-3057(02)00386-5

    Article  CAS  Google Scholar 

  36. Lizymol PP, Thomas S (1993) Thermal behaviour of polymer blends: a comparison of the thermal properties of miscible and immiscible systems. Polym Degrad Stab 41:59–64. https://doi.org/10.1016/0141-3910(93)90061-M

    Article  CAS  Google Scholar 

  37. Mousavioun P, Doherty WOS, George G (2010) Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind Crops Prod 32:656–661. https://doi.org/10.1016/j.indcrop.2010.08.001

    Article  CAS  Google Scholar 

  38. Tecante A, del Nez Santiago M (2012) Solution properties of κ-carrageenan and its interaction with other polysaccharides in aqueous media. Rheology. InTech, London, pp 241–264

    Google Scholar 

  39. Sehaqui H, Allais M, Zhou Q, Berglund LA (2011) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Compos Sci Technol 71:382–387. https://doi.org/10.1016/j.compscitech.2010.12.007

    Article  CAS  Google Scholar 

  40. Mao J, Tang Y, Zhao R et al (2019) Preparation of nanofibrillated cellulose and application in reinforced PLA/starch nanocomposite film. J Polym Environ 27:728–738. https://doi.org/10.1007/s10924-019-01382-6

    Article  CAS  Google Scholar 

  41. Bracone ME (2019) Optimization of acid hydrolysis process for the preparation cellulose nanofibrils. Adv Mater Lett 10:499–507. https://doi.org/10.5185/amlett.2019.2182

    Article  CAS  Google Scholar 

  42. Thomas MG, Abraham E, Jyotishkumar P et al (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777. https://doi.org/10.1016/j.ijbiomac.2015.08.053

    Article  CAS  PubMed  Google Scholar 

  43. Gan PG, Sam ST, Faiq M, Omar MF (2020) Thermal properties of nanocellulose-reinforced composites: a review. J Appl Polym Sci. https://doi.org/10.1002/app.48544

    Article  Google Scholar 

  44. Roh YH, Shin CS (2006) Preparation and characterization of alginate–carrageenan complex films. J Appl Polym Sci 99:3483–3490. https://doi.org/10.1002/app.22971

    Article  CAS  Google Scholar 

  45. Popa EG, Gomes ME, Reis RL (2011) Cell delivery systems using alginate-carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules 12:3952–3961. https://doi.org/10.1021/bm200965x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CAPES [code 001] and FAPESP-Brazil [Grant number 2019/02535-5] for financial support, Algasbras LTDA® and Suzano Papel e Celulose® for supplying the K-carrageenan and Cellulose nanofibers, and Multi-User Macromolecule Functionality Center (CEMFUM / FZEA USP) for mechanical analyses.

Author information

Authors and Affiliations

Authors

Contributions

GDU: Methodology, Data curation, Investigation, Writing—original draft & editing. RF: Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Roselena Faez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulrich, G.D., Faez, R. Thermal, Mechanical and Physical Properties of Composite Films Developed from Seaweed Polysaccharides/Cellulose Nanofibers. J Polym Environ 30, 3688–3700 (2022). https://doi.org/10.1007/s10924-022-02459-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02459-5

Keywords

Navigation