Skip to main content
Log in

Efficient removal of methyl blue from aqueous solution by using poly(4-vinylpyridine)–graphene oxide–Fe3O4 magnetic nanocomposites

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The poly(4-vinylpyridine)–graphene oxide–Fe3O4 magnetic nanohybrid (GO-Fe3O4@P4VP) was prepared and used as a novel nanoadsorbent to efficiently remove methyl blue (MB) from aqueous solution. The GO-Fe3O4@P4VP was characterized with scanning electron microscopy, transmission electron microscopy, elemental analysis, BET surface area, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The GO-Fe3O4@P4VP had high surface area, porous structure and magnetic properties. Adsorption performances of GO-Fe3O4@P4VP for MB were investigated at different pH, initial concentrations of MB, ionic strength, adsorbent dosage, contact time and the temperature. Adsorption equilibrium and kinetic process of MB on GO-Fe3O4@P4VP were well described by the Freundlich isotherm model and the pseudo-second-order kinetic model, respectively. Additionally, the characteristics of high adsorption capacity, rapid adsorption rate, good reusability and magnetic separation would make GO-Fe3O4@P4VP become a perfect candidate to remove MB in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Zhu G, Xing X, Wang J et al (2017) Effect of acid and hydrothermal treatments on the dye adsorption properties of biomass-derived activated carbon. J Mater Sci 52:7664–7676. https://doi.org/10.1007/s10853-017-1055-0

    Article  Google Scholar 

  2. Ma H, Pu S, Hou Y et al (2018) A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification. Chem Eng J 345:556–565

    Article  Google Scholar 

  3. Afkhami A, Moosavi R (2010) Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J Hazard Mater 174(1–3):398–403

    Article  Google Scholar 

  4. Parmar KR, Patel I, Basha S et al (2014) Synthesis of acetone reduced graphene oxide/Fe3O4composite through simple and efficient chemical reduction of exfoliated graphene oxide for removal of dye from aqueous solution. J Mater Sci 49(19):6772–6783. https://doi.org/10.1007/s10853-014-8378-x

    Article  Google Scholar 

  5. González JA, Villanueva ME, Piehl LL et al (2015) Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption study. Chem Eng J 280:41–48

    Article  Google Scholar 

  6. Ma H, Pu S, Hou Y et al (2018) A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification. Chem Eng J 345:556–565

    Article  Google Scholar 

  7. Liang GZ, Sun SP, Li FY et al (2014) Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J Membr Sci 469:306–315

    Article  Google Scholar 

  8. Rajeswari A, Vismaiya S, Anitha Pius (2017) Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem Eng J 313:928–937

    Article  Google Scholar 

  9. Villalobos MC, Cid AAP, González AMH (2016) Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups. J Environ Manag 117:65–73

    Article  Google Scholar 

  10. Ilyas S, Joseph N, Szymczyk A et al (2016) Weak polyelectrolyte multilayers as tunable membranes for solvent resistant nanofiltration. J Membr Sci 514:322–331

    Article  Google Scholar 

  11. Hu E, Wu X, Shang S et al (2016) Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J Clean Prod 112(5):4710–4718

    Article  Google Scholar 

  12. Li X, Lu H, Zhang Y et al (2017) Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs-CoFe2O4 magnetic nanocomposites. Chem Eng J 316:893–902

    Article  Google Scholar 

  13. Fan L, Luo C, Li X et al (2012) Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J Hazard Mater 215–216:272–279

    Article  Google Scholar 

  14. Rêgo TV, Cadaval TR Jr, Dotto GL et al (2013) Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films. J Colloid Interface Sci 411:27–33

    Article  Google Scholar 

  15. Xu R, Mao J, Peng N et al (2018) Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes. Carbohydr Polym 188:143–150

    Article  Google Scholar 

  16. Singh H, Chauhan G, Jain AK et al (2017) Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. J Environ Chem Eng 5(1):122–135

    Article  Google Scholar 

  17. Goswami M, Phukan P et al (2017) Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. J Environ Chem Eng 5(4):3508–3517

    Article  Google Scholar 

  18. Banerjee SS, Joshi MV, Jayaram RV et al (2006) Effect of quaternary ammonium cations on dye sorption to fly ash from aqueous media. J Colloid Interface Sci 303(2):477–483

    Article  Google Scholar 

  19. Wan S, He F, Wu J et al (2016) Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J Hazard Mater 314:32–40

    Article  Google Scholar 

  20. Shen Y, Chen B et al (2015) Sulfonnated graphene nanosheets as a superb adsorbent for various environmental pollutants in water. Environ Sci Technol 49(12):7364–7372

    Article  Google Scholar 

  21. Shen Y, Fang Q, Chen B et al (2015) Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. Environ Sci Technol 49(1):67–84

    Article  Google Scholar 

  22. Das TR, Patra S, Madhuri R et al (2018) Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J Colloid Interface Sci 509:82–93

    Article  Google Scholar 

  23. Liu M, Wen T, Wu X et al (2013) Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(VI) removal. Dalton Trans 42:14710–14717

    Article  Google Scholar 

  24. Tayyebi A, Outokesh M, Moradi S et al (2015) Synthesis and characterization of ultrasound assisted “graphene oxide–magnetite” hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions. Appl Surf Sci 353:350–362

    Article  Google Scholar 

  25. Larraza I, López-Gónzalez M, Corrales T et al (2012) Hybrid materials: magnetite-polyethylenimine-montmorillonite, as magnetic adsorbents for Cr(VI) water treatment. J Colloid Interface Sci 385(1):24–33

    Article  Google Scholar 

  26. Gholampoor M, Movassagh-Alanagh Salimkhani H (2017) Fabrication of nano-Fe3O4, 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method. Solid State Sci 64:51–61

    Article  Google Scholar 

  27. Lee JS, Hong SK, Hur NJ et al (2013) Fabrication of spherical silica aerogel/magnetite nanocomposite particles. Mater Lett 112:153–157

    Article  Google Scholar 

  28. Doustkhah E, Rostamnia S (2016) Covalently bonded sulfonic acid magnetic graphene oxide: Fe3O4@GO-Pr-SO3H as a powerful hybrid catalyst for synthesis of indazolophthalazinetriones. J Colloid Interface Sci 478:280–287

    Article  Google Scholar 

  29. Hatel R, Goumri M, Ratier B et al (2017) Graphene derivatives/Fe3O4/polymer nanocomposite films: optical and electrical properties. Mater Chem Phys 193:156–163

    Article  Google Scholar 

  30. Janakiraman S, Farrell SL, Hsieh CY et al (2015) Kinetic analysis of the initiated chemical vapor deposition of poly(vinylpyrrolidone) and poly(4-vinylpyridine). Thin Solid Films 595:244–250

    Article  Google Scholar 

  31. Ghadimi H, Tehrani RMA, Basirun WJ et al (2016) Electrochemical determination of aspirin and caffeine at MWCNTs-poly-4-vinylpyridine composite modified electrode. J Taiwan Inst Chem Eng 65:101–109

    Article  Google Scholar 

  32. Li Y, Hong L, Chen Y et al (2017) Poly(4-vinylpyridine)/carbon black composite as a humidity sensor. Sens Actuators B 123(1):554–559

    Article  Google Scholar 

  33. Chetouani A, Medjahed K, Sid-Lakhdar KE et al (2004) Poly(4-vinylpyridine-poly(3-oxide-ethylene) tosyle) as an inhibitor for iron in sulphuric acid at 80°C. Corros Sci 46(10):2421–2430

    Article  Google Scholar 

  34. Tenhaeff WE, McIntosh LD, Gleason KK (2010) Poly(4-vinylpyridine) thin films by initiated chemical vapor deposition (iCVD) for selective nanotrench-based sensing of nitroaromatics. Adv Funct Mater 20:1144–1151

    Article  Google Scholar 

  35. Mehdinia A, Ramezani M, Jabbari A (2017) Preconcentration and determination of lead ions in fish and mollusk tissues by nanocomposite of Fe3O4@graphene oxide@polyimide as a solid phase extraction sorbent. Food Chem 237:1112–1117

    Article  Google Scholar 

  36. Qin S, Qin D, Ford WT et al (2004) Grafting of poly(4-vinylpyridine) to single-walled carbon nanotubes and assembly of multilayer films. Macromolecules 37(26):9963–9967

    Article  Google Scholar 

  37. Wang L, Hu D, Kong X et al (2018) Anionic polypeptide poly(γ-glutamic acid)-functionalized magnetic Fe3O4-GO-(o-MWCNTs) hybrid nanocomposite for high-efficiency removal of Cd(II), Cu(II) and Ni(II) heavy metal ions. Chem Eng J 346:38–49

    Article  Google Scholar 

  38. Zeng S, Duan S, Tang R et al (2014) Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chem Eng J 258:218–228

    Article  Google Scholar 

  39. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1368

    Article  Google Scholar 

  40. Fu J, Xin Q, Wu X et al (2016) Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres. J Colloid Interface Sci 461:292–304

    Article  Google Scholar 

  41. Ho YS, Kay GM (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  Google Scholar 

  42. Xie G, Xi P, Liu H et al (2011) A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. J Mater Chem 22:1033–1039

    Article  Google Scholar 

  43. Sahiner N, Atta AM, Yasar AO et al (2015) Surface activity of amphiphilic cationic pH-responsive poly(4-vinylpyridine) microgel at air/water interface. Colloids Surf Physicochem Eng Asp 482:647–655

    Article  Google Scholar 

  44. Li J, Qiu JD, Xu JJ et al (2010) The synergistic effect of Prussian blue grafted carbon nanotube/poly(4-vinylpyridine) composites for amperometric sensing. Adv Funct Mater 17:1574–1580

    Article  Google Scholar 

  45. Zeng B, Yang L, Zheng W et al (2018) Analysis of the formation process and performance of magnetic Fe3O4@Poly(4-vinylpyridine) absorbent prepared by in situ synthesis. J Mater Sci Technol 34:999–1007

    Article  Google Scholar 

  46. Sun Z, Yu Y, Mao L et al (2008) Sorption behavior of tetrabromobisphenol A in two soils with different characteristics. J Hazard Mater 160:456–461

    Article  Google Scholar 

  47. Yu Q, Deng S, Yu G (2008) Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Res 42:3089–3097

    Article  Google Scholar 

  48. Su Y, Cui H, Li Q et al (2013) Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Res 47:5018–5026

    Article  Google Scholar 

  49. Ren X, Shao D, Yang S et al (2011) Comparative study of Pb(II) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions. Chem Eng J 170:170–177

    Article  Google Scholar 

  50. Shao Y, Wang X, Kang Y et al (2014) Application of Mn/MCM-41 as an adsorbent to remove methyl blue from aqueous solution. J Colloid Interface Sci 429:25–33

    Article  Google Scholar 

  51. Lv M, Yan L, Liu C et al (2018) Non-covalent functionalized graphene oxide (GO) Adsorbent with an organic gelator for co-adsorption of dye, endocrine-disruptor, pharmaceutical and metal ion. Chem Eng J 349:791–799

    Article  Google Scholar 

  52. Abdi J, Vossoughi M, Mahmoodi NM et al (2017) Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J 326:1145–1158

    Article  Google Scholar 

  53. Zhao L, Sun X, Lei Z et al (2015) Thermoelectric behavior of aerogels based on graphene and multi-walled carbon nanotube nanocomposites. Compos Part B Eng 83:317–322

    Article  Google Scholar 

  54. Jiang Y, Lu M, Ling X et al (2015) One-step hydrothermal synthesis of three-dimensional porous grapheme aerogels/sulfur nanocrystals for lithium-sulfur batteries. J Alloy Compd 645:509–516

    Article  Google Scholar 

  55. Zhou S, Xue A, Zhang Y et al (2015) Novel polyamidoamine dendrimer-functionalized palygorskite adsorbents with high adsorption capacity for Pb2+ and reactive dyes. Appl Clay Sci 107:220–229

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 21407071) and the Fundamental Research Funds for the Central Universities (No. lzujbky-2017-218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lu, H., Wang, Y. et al. Efficient removal of methyl blue from aqueous solution by using poly(4-vinylpyridine)–graphene oxide–Fe3O4 magnetic nanocomposites. J Mater Sci 54, 7603–7616 (2019). https://doi.org/10.1007/s10853-019-03441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03441-8

Navigation