Skip to main content

Advertisement

Log in

Polymers, the Light at the End of Dark Fermentation: Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a Photoheterotrophic Consortium

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, the photoheterotrophic consortium C4 was used to produce the copolymer [P(3HB-co-3HV)]. PHA production was enhanced by using response surface methodology (RSM) to determine the effects of different concentrations of acetate and butyrate in mixtures (0.5–3 g L−1), ammonium sulfate and their combinations. This is relevant because PHA accumulation is stimulated by nitrogen limitation. The type and concentration of the substrate determines the monomeric composition and the PHA content (% per cell dry mass (CDM)). The RSM, carbon balance and metabolic behavior analysis results showed that at the lowest ammonium concentration, 0.1 g L−1, and when acetate was in a higher proportion than butyrate, biomass production was favored. In contrast, when the butyrate proportion was high, PHA production increased, reaching a highest production of 58% per CDM. The better conditions were evaluated in a 3-L reactor, and a maximum P(3HB-co-3HV) of 67% was determined. The predominant microbial population consisted of four major species, Macelibacteroides fermentans (37%), Rhodopseudomonas palustris (22%), Acinetobacter sp. (35%), and Clostridium propionicum (2%). Insights into the understanding of copolymer production by photoheterotrophic mixed cultures constitute the basis for developing coupled processes from organic residues. These microorganisms are worth studying since they produce a variety of valuable biotechnological products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

The datasets generated during the study are available from the corresponding author on reasonable request [E.I. García-Peña].

Code Availability

Not applicable.

References

  1. Muneer F, Rasul I, Azeem F et al (2020) Microbial polyhydroxyalkanoates (PHAs): efficient replacement of synthetic polymers. J Polym Environ 28:2301–2323. https://doi.org/10.1007/s10924-020-01772-1

    Article  CAS  Google Scholar 

  2. Prajapati K, Nayak R, Shukla A et al (2021) Polyhydroxyalkanoates: an exotic gleam in the gloomy tale of plastics. J Polym Environ 29:2013–2032. https://doi.org/10.1007/s10924-020-02025-x

    Article  CAS  Google Scholar 

  3. Zhang J, Shishatskaya EI, Volova TG et al (2018) Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater Sci Eng C 86:144–150. https://doi.org/10.1016/j.msec.2017.12.035

    Article  CAS  Google Scholar 

  4. Cavaillé L, Albuquerque M, Grousseau E et al (2016) Understanding of polyhydroxybutyrate production under carbon and phosphorus-limited growth conditions in non-axenic continuous culture. Bioresour Technol 201:65–73. https://doi.org/10.1016/j.biortech.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  5. Koller M, Atlić A, Dias M et al (2010) Microbial PHA production from waste raw materials. In: Chen GG-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 85–119

    Chapter  Google Scholar 

  6. Tsang YF, Kumar V, Samadar P et al (2019) Production of bioplastic through food waste valorization. Environ Int 127:625–644. https://doi.org/10.1016/j.envint.2019.03.076

    Article  CAS  PubMed  Google Scholar 

  7. Hitit ZY, Zampol Lazaro C, Hallenbeck PC (2017) Increased hydrogen yield and COD removal from starch/glucose based medium by sequential dark and photo-fermentation using Clostridium butyricum and Rhodopseudomonas palustris. Int J Hydrog Energy 42:18832–18843. https://doi.org/10.1016/j.ijhydene.2017.05.161

    Article  CAS  Google Scholar 

  8. Niño-Navarro C, Chairez I, Christen P et al (2020) Enhanced hydrogen production by a sequential dark and photo fermentation process: effects of initial feedstock composition, dilution and microbial population. Renew Energy 147:924–936. https://doi.org/10.1016/j.renene.2019.09.024

    Article  CAS  Google Scholar 

  9. Kumar G, Ponnusamy VK, Bhosale RR et al (2019) A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresour Technol 287:121427. https://doi.org/10.1016/j.biortech.2019.121427

    Article  CAS  PubMed  Google Scholar 

  10. Hädicke O, Grammel H, Klamt S (2011) Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Syst Biol 5:eoo150. https://doi.org/10.1186/1752-0509-5-150

    Article  CAS  Google Scholar 

  11. Monroy I, Buitrón G (2020) Production of polyhydroxybutyrate by pure and mixed cultures of purple non-sulfur bacteria: a review. J Biotechnol 317:39–47. https://doi.org/10.1016/j.jbiotec.2020.04.012

    Article  CAS  PubMed  Google Scholar 

  12. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258. https://doi.org/10.1038/nrmicro1383

    Article  CAS  PubMed  Google Scholar 

  13. Albuquerque MGE, Martino V, Pollet E et al (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol 151:66–76. https://doi.org/10.1016/j.jbiotec.2010.10.070

    Article  CAS  PubMed  Google Scholar 

  14. Guerra-Blanco P, Cortes O, Poznyak T et al (2018) Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: effect of culture conditions over microbial population and biopolymer yield and composition. Eur Polym J 98:94–104. https://doi.org/10.1016/j.eurpolymj.2017.11.007

    Article  CAS  Google Scholar 

  15. Fradinho JC, Oehmen A, Reis MAM (2014) Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): substrate preferences and co-substrate uptake. J Biotechnol 185:19–27. https://doi.org/10.1016/j.jbiotec.2014.05.035

    Article  CAS  PubMed  Google Scholar 

  16. Cavaillé L, Grousseau E, Pocquet M et al (2013) Polyhydroxybutyrate production by direct use of waste activated sludge in phosphorus-limited fed-batch culture. Bioresour Technol 149:301–309. https://doi.org/10.1016/j.biortech.2013.09.044

    Article  CAS  PubMed  Google Scholar 

  17. Albuquerque MGE, Carvalho G, Kragelund C et al (2013) Link between microbial composition and carbon substrate-uptake preferences in a PHA-storing community. ISME J 7:1–12. https://doi.org/10.1038/ismej.2012.74

    Article  CAS  PubMed  Google Scholar 

  18. Wen Q, Chen Z, Tian T, Chen W (2010) Effects of phosphorus and nitrogen limitation on PHA production in activated sludge. J Environ Sci 22:1602–1607. https://doi.org/10.1016/S1001-0742(09)60295-3

    Article  CAS  Google Scholar 

  19. Sangkharak K, Prasertsan P (2007) Optimization of polyhydroxybutyrate production from a wild type and two mutant strains of Rhodobacter sphaeroides using statistical method. J Biotechnol 132:331–340. https://doi.org/10.1016/j.jbiotec.2007.07.721

    Article  CAS  PubMed  Google Scholar 

  20. Hitit ZY, Lazaro CZ, Hallenbeck PC (2017) Single stage hydrogen production from cellulose through photo-fermentation by a co-culture of Cellulomonas fimi and Rhodopseudomonas palustris. Int J Hydrog Energy 42:6556–6566. https://doi.org/10.1016/j.ijhydene.2016.12.035

    Article  CAS  Google Scholar 

  21. Pokój T, Klimiuk E, Ciesielski S (2019) Interactive effect of crude glycerin concentration and C:N ratio on polyhydroxyalkanoates accumulation by mixed microbial cultures modelled with response surface methodology. Water Res 156:434–444. https://doi.org/10.1016/j.watres.2019.03.033

    Article  CAS  PubMed  Google Scholar 

  22. Kynadi AS, Suchithra TV (2017) Formulation and optimization of a novel media comprising rubber seed oil for PHA production. Ind Crops Prod 105:156–163. https://doi.org/10.1016/j.indcrop.2017.04.062

    Article  CAS  Google Scholar 

  23. Khanna S, Srivastava AK (2005) Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochem 40:2173–2182. https://doi.org/10.1016/j.procbio.2004.08.011

    Article  CAS  Google Scholar 

  24. Nygaard D, Yashchuk O, Hermida ÉB (2019) Evaluation of culture medium on poly(3-hydroxybutyrate) production by Cupriavidus necator ATCC 17697: application of the response surface methodology. Heliyon 5:e01374. https://doi.org/10.1016/j.heliyon.2019.e01374

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  26. Garcia-Peña EI, Parameswaran P, Kang DW et al (2011) Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresour Technol 102:9447–9455. https://doi.org/10.1016/j.biortech.2011.07.068

    Article  CAS  PubMed  Google Scholar 

  27. Grousseau E, Blanchet E, Déléris S et al (2013) Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator. Bioresour Technol 148:30–38. https://doi.org/10.1016/j.biortech.2013.08.120

    Article  CAS  PubMed  Google Scholar 

  28. Mukhopadhyay M, Patra A, Paul AK (2005) Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Rhodopseudomonas palustris SP5212. World J Microbiol Biotechnol 21:765–769. https://doi.org/10.1007/s11274-004-5565-y

    Article  CAS  Google Scholar 

  29. Kedia G, Passanha P, Dinsdale RM et al (2014) Evaluation of feeding regimes to enhance PHA production using acetic and butyric acids by a pure culture of Cupriavidus necator. Biotechnol Bioproc Eng 19:989–995. https://doi.org/10.1007/s12257-014-0144-z

    Article  CAS  Google Scholar 

  30. Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161. https://doi.org/10.1016/S0168-1656(98)00126-6

    Article  CAS  PubMed  Google Scholar 

  31. Saito Y, Nakamura S, Hiramitsu M, Doi Y (1996) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int 39:169–174

    Article  CAS  Google Scholar 

  32. Marang L, Jiang Y, van Loosdrecht MCM, Kleerebezem R (2013) Butyrate as preferred substrate for polyhydroxybutyrate production. Bioresour Technol 142:232–239. https://doi.org/10.1016/j.biortech.2013.05.031

    Article  CAS  PubMed  Google Scholar 

  33. Hong C, Hao H, Haiyun W (2009) Process optimization for PHA production by activated sludge using response surface methodology. Biomass Bioenerg 33:721–727. https://doi.org/10.1016/j.biombioe.2008.11.004

    Article  CAS  Google Scholar 

  34. Mengmeng C, Hong C, Qingliang Z et al (2009) Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Bioresour Technol 100:1399–1405. https://doi.org/10.1016/j.biortech.2008.09.014

    Article  CAS  PubMed  Google Scholar 

  35. Mukhopadhyay M, Patra A, Paul AK et al (2013) Phototrophic growth and accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by purple nonsulfur bacterium Rhodopseudomonas palustris SP5212. J Polym. https://doi.org/10.1155/2013/523941

    Article  Google Scholar 

  36. Golomysova A, Gomelsky M, Ivanov PS (2010) Flux balance analysis of photoheterotrophic growth of purple nonsulfur bacteria relevant to biohydrogen production. Int J Hydrog Energy 35:12751–12760. https://doi.org/10.1016/j.ijhydene.2010.08.133

    Article  CAS  Google Scholar 

  37. Mohd Z, Kumar S, Kumar S, Dhiman AK (2012) Optimization of polyhydroxybutyrate (PHB) production by Azohydromonas lata MTCC 2311 by using genetic algorithm based on artificial neural network and response surface methodology. Biocatal Agric Biotechnol 1:70–79. https://doi.org/10.1016/j.bcab.2011.08.012

    Article  CAS  Google Scholar 

  38. Suhazsini P, Keshav R, Narayanan S et al (2020) A study on the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Bacillus megaterium utilizing cheese whey permeate. J Polym Environ 28:1390–1405. https://doi.org/10.1007/s10924-020-01687-x

    Article  CAS  Google Scholar 

  39. Serafim LS, Lemos PC, Oliveira R, Reis MAM (2004) Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol Bioeng 87:145–160. https://doi.org/10.1002/bit.20085

    Article  CAS  PubMed  Google Scholar 

  40. Luong JHT, Mulchandani A, Leduy A (1988) Kinetics of biopolymer synthesis: a revisit. Enzyme Microb Technol 10:326–332. https://doi.org/10.1016/0141-0229(88)90010-5

    Article  CAS  Google Scholar 

  41. Mozumder MdSI, Goormachtigh L, Garcia-Gonzalez L et al (2014) Modeling pure culture heterotrophic production of polyhydroxybutyrate (PHB). Bioresour Technol 155:272–280. https://doi.org/10.1016/j.biortech.2013.12.103

    Article  CAS  PubMed  Google Scholar 

  42. Riedel SL, Jahns S, Koenig S et al (2015) Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol 214:119–127. https://doi.org/10.1016/j.jbiotec.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  43. Yang Y-H, Brigham CJ, Budde CF et al (2010) Optimization of growth media components for polyhydroxyalkanoate (PHA production from organic acids by Ralstonia eutropha. Appl Microbiol Biotechnol 87:2037–2045. https://doi.org/10.1007/s00253-010-2699-8

    Article  CAS  PubMed  Google Scholar 

  44. Emeruwa AC, Hawirko RZ (1973) Poly-β-hydroxybutyrate metabolism during growth and sporulation of Clostridium botulinum. J Bacteriol 116:989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Knight GC, Seviour RJ, Soddell JA et al (1995) Metabolic variation among strains of Acinetobacter isolated from activated sludge. Water Res 29:2081–2084. https://doi.org/10.1016/0043-1354(95)00024-F

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by IPN Grant 20211717 and Conacyt Grant 682137.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and the manuscript writing. The funding acquisition and the resources were provided by E.I. García-Peña. All authors approved the final manuscript.

Corresponding author

Correspondence to E. I. García-Peña.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortés, O., Guerra-Blanco, P., Chairez, I. et al. Polymers, the Light at the End of Dark Fermentation: Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a Photoheterotrophic Consortium. J Polym Environ 30, 2392–2404 (2022). https://doi.org/10.1007/s10924-021-02350-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02350-9

Keywords

Navigation