Skip to main content
Log in

Toughness Improvement in Bio-based Poly(Lactic Acid)/Epoxidized Natural Rubber Blend Reinforced with Nanosized Silica

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study focused on improving the toughness properties of poly(lactic acid) (PLA) by blending with either epoxidized natural rubber (ENR) or ENR plus nanosized silica (nSiO2). ENR with 30 mol% epoxidation (ENR-30) was synthesized via in situ performic acid epoxidation of NR latex under a controlled amount of hydrogen peroxide and formic acid. PLA was melt-mixed with three weight percentages (10–30 wt %) of ENR-30 using an internal mixer, followed by compression molding. The 80/20 PLA/ENR-30 blend showed the highest impact strength and elongation at break, indicating the optimally possible improvement in the toughness of PLA. This composition was further chosen for fabricating nanocomposites with nSiO2 at 1–3 phr. Nanocomposite at 2 phr nSiO2 revealed the highest impact strength with 1.8-fold over the neat blend, but the tensile properties of all nanocomposites decreased with the increasing nSiO2 contents. The scanning electron microscopy analysis showed a preferential distribution of nSiO2 in the ENR-30 phase rather than in the PLA phase. Based on thermal analysis results, the thermal stability of the entire nanocomposites was significantly higher than that of the neat blend, while the thermal behavior (Tg and Tm) of PLA in the nanocomposites showed no significant change.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akbari A, Jawaid M, Hassan A, Balakishnan H (2013) Epoxidized natural rubber toughened polylactic acid/talc composites: mechanical, thermal, and morphological properties. J Compos Mater 48:769–781

    Article  Google Scholar 

  2. Chaiwutthinan P, Chuayjuljit S, Srasomsub S, Boonmahitthisud A (2019) Composites of poly(lactic acid)/poly(butylene adipate–co–terephthalate) blend with wood fiber and wollastonite: physical properties, morphology, and biodegradability. J Appl Polym Sci 136:47543

    Article  Google Scholar 

  3. Wang L, Tong Z, Ingram LO, Cheng Q, Matthews S (2013) Green composites of poly (lactic acid) and sugarcane bagasse residues from bio-refinery processes. J Polym Environ 21:780–788

    Article  Google Scholar 

  4. Elsawy MA, Kimc KH, Parkc JW, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79:1346–1352

    Article  CAS  Google Scholar 

  5. Zhang C, Wang W, Huang Y, Pan Y, Jiang L, Dan Y, Luo Y, Peng Z (2013) Thermal, mechanical and rheological properties of polylactide toughened by epoxidized natural rubber. Mater Des 4:198–205

    Article  Google Scholar 

  6. Xu C, Zhang X, Jin Z, Nie S, Yang R (2019) Study on mechanical and thermal properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/office wastepaper fiber biodegradable composites. J Polym Environ 27:1273–1284

    Article  CAS  Google Scholar 

  7. Bijarimi M, Ahmad S, Rasid R (2014) Melt blends of poly(lactic acid)/natural rubber and liquid epoxidised natural rubber. J Rubber Res 17:57–68

    Google Scholar 

  8. Chuayjuljit S, Wongwaiwattanakul C, Chaiwutthinan P, Prasassarakich P (2017) Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: physical and morphological properties. Polym Compos 38:2841–2851

    Article  CAS  Google Scholar 

  9. Pivsa-Art W, Pivsa-Art S (2019) Effect of talc on mechanical characteristics and fracture toughness of poly(lactic acid)/poly(butylene succinate) blend. J Polym Environ 27:1821–1827

    Article  CAS  Google Scholar 

  10. Baouz T, Rezgui F, Yilmazer U (2013) Ethylene-methyl acrylate-glycidyl methacrylate toughened poly(lactic acid) nanocomposites. J Appl Polym Sci 128:3193–3204

    Article  CAS  Google Scholar 

  11. Li SM, Xu TW, Jia ZX, Zhong BC, Luo YF, Jia DM, Peng Z (2018) Preparation and stress-strain behavior of in-situ epoxidized natural rubber/SiO2 hybrid through a sol-gel method. Express Polym Lett 12:180–185

    Article  CAS  Google Scholar 

  12. Bijarimi M, Ahmad S, Rasid R (2014) Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized natural rubber blends. J Elastom Plast 46:338–354

    Article  CAS  Google Scholar 

  13. Cipriano TF, Silva ALN, Silva AHM, Silva GM, Rocha MG (2014) Thermal, rheological and morphological properties of poly (lactic acid) (PLA) and talc composites. Polimeros 24:276–282

    Article  CAS  Google Scholar 

  14. Dorigato A, Sebastiani M, Pegoretti A, Fambri L (2012) Effect of silica nanoparticles on the mechanical performances of poly(lactic acid). J Polym Environ 20:713–725

    Article  CAS  Google Scholar 

  15. Salehiyan R, Yussuf AA, Hanani NF, Hassan A, Akbari A (2015) Polylactic acid/polycaprolactone nanocomposite: influence of montmorillonite and impact modifier on mechanical, thermal, and morphological properties. J Elastom Plast 47:69–87

    Article  CAS  Google Scholar 

  16. Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32:918–926

    Article  CAS  Google Scholar 

  17. Rigoussen A, Verge P, Raquez JM, Habibi Y (2017) In-depth investigation on the effect and role of cardanol in the compatibilization of PLA/ABS immiscible blends by reactive extrusion. Eur Polym J 93:272–283

    Article  CAS  Google Scholar 

  18. Wahit MU, Hassan A, Ibrahim AN, Zawawi NA, Kunasegeran K (2015) Mechanical, thermal and chemical resistance of epoxidized natural rubber toughened polylactic acid blends. Sains Malays 44:1615–1623

    CAS  Google Scholar 

  19. Yang H, Zhang Q, Guo M, Wang C, Du W, Fu Q (2006) Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer 47:2106–2115

    Article  CAS  Google Scholar 

  20. Tangjung FA, Hassan A, Hasan M (2015) Use of epoxidized natural rubber as a toughening agent in plastics. J Appl Polym Sci 132:42270

    Google Scholar 

  21. Sanguansap K, Suteewong T, Saendee P, Buranabunya U, Tangboriboonrat P (2005) Composite natural rubber based latex particles: a novel approach. Polymer 46:1373–1378

    Article  CAS  Google Scholar 

  22. Chuayjuljit S, Mungmeechai P, Boonmahitthisud A (2017) Mechanical properties, thermal behaviors and oil resistance of epoxidized natural rubber/multiwalled carbon nanotube nanocomposites prepared via in situ epoxidation. J Elastom Plast 49:99–119

    Article  CAS  Google Scholar 

  23. Raksaksri L, Chuayjuljit S, Chaiwutthinan P, Boonmahitthisud A (2019) Vinyl acetate ethylene copolymer and nanosilica reinforced epoxidized natural rubber: effects of sulfur curing systems on cure characteristics, tensile properties, thermal stability, dynamic mechanical properties and oil resistance. J Vinyl Addit Technol 25:28–38

    Article  Google Scholar 

  24. Vu CM, Vu HT, Choi HJ (2015) Fabrication of natural rubber/epoxidized natural rubber/nanosilica nanocomposites and their physical characteristics. Macromol Res 23:284–290

    Article  CAS  Google Scholar 

  25. Ishida S, Nagasaki R, Chino K, Inoue Y (2009) Toughening of poly(L-lactide) by melt blending with rubbers. J Appl Polym Sci 113:558–566

    Article  CAS  Google Scholar 

  26. Desa MSZM, Hassan A, Arsad A, Arjmandi R, (2016) Influence of rubber content on mechanical. Thermal, and morphological behavior of natural rubber toughened poly(lactic acid)-multiwalled carbon nanotube nanocomposites. J Appl Polym Sci 133:44344

    Google Scholar 

  27. Zakaria Z, Islam MD, Hassan A, Haafiz MKM, Arjmandi R, Inuwa IM, Hasan M (2013) Mechanical properties and morphological characterization of PLA/chitosan/epoxidized natural rubber composites. Adv Mater Sci Eng 2013:629092

    Article  Google Scholar 

  28. Mustafa SNIS, Man SHC, Hassan A, Baharulrazi N (2020) Enhancement of toughness and thermal properties of polylactic acid/liquid epoxidized natural rubber/graphene oxide composites. AIP Conf Proc 2267:020062

    Article  Google Scholar 

  29. Ahmad AA, Baharum A (2018) Biocomposite of epoxidized natural rubber/ poly(lactic acid)/catappa leaves as shoe insole. J Polym Sci Technol 3:20–28

    Google Scholar 

  30. Tham WL, Poh BT, Ishak ZAM, Chow WS (2016) Epoxidized natural rubber toughened poly(lactic acid)/halloysite nanocomposites with high activation energy of water diffusion. J Appl Polym Sci 133:42350

    Article  Google Scholar 

  31. Wu JH, Chen CW, Kuo MC, Yen MS, Lee KY (2018) High toughness and fast crystallization poly(lactic acid)/polyamide 11/SiO2 composites. J Polym Environ 26:626–635

    Article  CAS  Google Scholar 

  32. Braum MV, Jacobi MAM (2016) Kinetic behavior of the reaction between silica and epoxidized liquid rubber. Polímeros 26:291–296

    Article  Google Scholar 

  33. Nematollahi M, Jalali-Arani A, Modarress H (2019) Effect of nanoparticle localization on the rheology, morphology and toughness of nanocomposites based on poly(lactic acid)/natural rubber/nanosilica. Polym Int 68:779–787

    Article  CAS  Google Scholar 

  34. Wang Y, Chen K, Xu C, Chen Y (2015) Supertoughened biobased poly(lactic acid)–epoxidized natural rubber thermoplastic vulcanizates: fabrication, co-continuous phase structure, interfacial in situ compatibilization, and toughening mechanism. J Phys Chem B 119:12138–12146

    Article  CAS  PubMed  Google Scholar 

  35. Matins CG, Larocca NM, Paul DR, Pessan LA (2009) Nanocomposites formed from polypropylene/EVA blends. Polymer 50:1743–1754

    Article  Google Scholar 

  36. Balakrishnan H, Hassan A, Wahit MU (2010) Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. J Elastom Plast 42:223–239

    Article  CAS  Google Scholar 

  37. Kaavessina M, Ali I, Al-Zahrani SM (2012) The Influences of elastomer toward crystallization of poly(lactic acid). Procedia Chem 4:164–171

    Article  CAS  Google Scholar 

  38. Zaman H, Song J, Park IS, Kang IK, Park SY, Kwak G, Park BS, Yoon KB (2011) Poly(lactic acid) blends with desired end-use properties by addition of thermoplastic polyester elastomer and MDI. Polym Bull 67:187–198

    Article  CAS  Google Scholar 

  39. Chen JH, Tsai FC, Nien YH, Yeh PH (2005) Isothermal crystallization of isotactic polypropylene blended with low molecular weight atactic polypropylene. Part I. Thermal properties and morphology development. Polymer 46:5680–5688

    Article  CAS  Google Scholar 

  40. Lima JCC, Araújo EAG, Agrawal P, Mélo TJA (2019) PLA/SEBS bioblends: influence of SEBS content and of thermal treatment on the impact strength and morphology. Macromol Symp 383:1700072

    Article  Google Scholar 

  41. Salehabadi A, Bakar MA, Bakar NHHA (2014) Effect of organo-modified nanoclay on the thermal and bulk structural properties of poly(3-hydroxybutyrate)-epoxidized natural rubber blends: formation of multi-components biobased nanohybrids. Materials 7:4508–4523

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lai SM, Li PW (2017) Effect of thermoplastic polyurethane-modified silica on melt blended poly(lactic acid) (PLA) nanocomposites. Polym Polym Compos 25:583–592

    CAS  Google Scholar 

  43. Cosme JGL, Silva VM, Nunes RRC, Picciani PHS (2016) Development of biobased poly(lactic acid)/epoxidized natural rubber blends processed by electrospinning: morphological, structural and thermal properties. Mater Sci Appl 7:210–219

    CAS  Google Scholar 

  44. Li SD, Peng Z, Kong LX, Zhong JP (2006) Thermal degradation kinetics and morphology of natural rubber/silica nanocomposites. J Nanosci Nanotechnol 6:541–546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Research is funded by Chulalongkorn University CU_GR_62_65_23_25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boonmahitthisud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonmahitthisud, A., Mongkolvai, A. & Chuayjuljit, S. Toughness Improvement in Bio-based Poly(Lactic Acid)/Epoxidized Natural Rubber Blend Reinforced with Nanosized Silica. J Polym Environ 29, 2530–2545 (2021). https://doi.org/10.1007/s10924-021-02063-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02063-z

Keywords

Navigation