Skip to main content
Log in

Thermal and mechanical properties of poly(lactic acid)/natural rubber blend using epoxidized natural rubber and poly(methyl methacrylate) as co-compatibilizers

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In order to improve the toughness of poly(lactic acid) (PLA), the incorporation of natural rubber (NR), which has a high elasticity and flexibility, can be used. However, the phase incompatibility between PLA and NR can cause poor mechanical properties of the final product in the absence of a compatibilizer because of their different polarities. In this research, epoxidized NR (ENR) and poly(methyl methacrylate) (PMMA) were used as co-compatibilizers for linking PLA/NR blends (PLA 100: NR 15 parts by weight per hundred parts of resin (phr)). Therefore, the aim of this research was to study the effect of the ENR/PMMA co-compatibilizer contents on the mechanical, thermal and morphological properties of the 100:15 phr PLA/NR blend. With 3 phr of ENR and 1 phr of PMMA, the elongation at break and impact strength of the 100:15 phr PLA/NR blend was significantly improved up to 1,813% and 362%, respectively. The thermal stability of the PLA/NR blend was also increased when using the co-compatibilizers. Interestingly, the PLA/NR blend containing the co-compatibilizer showed a high ultimate tensile strength after thermal aging at 100 °C for 1 h with good mechanical properties. However, the percentage of crystallinity and glass transition temperature were decreased by the added co-compatibilizer. Finally, a good compatibility between the PLA and NR matrices could be clearly observed by scanning electron microscopy in the presence of the co-compatibilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. T. H. Vink, K. R. Rabago, D. A. Glassner, and P. R. Grubber, Polym. Degrad. Stab., 80, 403 (2003).

    Article  CAS  Google Scholar 

  2. W. Groot, J. van Krieken, O. Sliekersl, and S. de Vos, in Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications, R. Auras, L. T. Lim., S. E. M. Selke, and H. Tsuji, Eds., John Wiley & Sons series New Jersey, 2010, pp 3–18.

  3. R. M. Rasal and D. E. Hirt, Macromol. Mater. Eng., 295, 204 (2010).

    Article  CAS  Google Scholar 

  4. J. R. Khurma, D. R. Rohindra, and R. Devi, SPJNS., 23, 22 (2005).

    Google Scholar 

  5. N. Bitinis, R. Verdejo, P. Cassagnau, and M. A. Lopez-Manchado, Mater. Chem. Phys., 129, 823 (2011).

    Article  CAS  Google Scholar 

  6. H. Chen, M. Pyda, and P. Cebe, Thermochim. Acta, 492, 61 (2009).

    Article  CAS  Google Scholar 

  7. W. Zhang, L. Chen, and Y. Zhang, Polymer, 50, 1311 (2009).

    Article  CAS  Google Scholar 

  8. H. Balakrishnan, A. Hassan, M. U. Wahit, and A. A. Yussuf, Mater. Des., 31, 3289 (2010).

    Article  CAS  Google Scholar 

  9. R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Prog. Polym. Sci., 35, 338 (2010).

    Article  CAS  Google Scholar 

  10. K. S. Anderson, S. H. Lim, and M. A. Hillmyer, J. Appl. Polym. Sci., 89, 3757 (2003).

    Article  CAS  Google Scholar 

  11. E. Piorkowska, Z. Kulinski, A. Galeski, and R. Masirek, Polymer, 47, 7178 (2006).

    Article  CAS  Google Scholar 

  12. Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, and E. Baer, Polymer, 44, 5681 (2003).

    Article  CAS  Google Scholar 

  13. V. P. Martino, A. Jiménez, and R. A. Ruseckaite, J. Appl. Polym., Sci. 112, 2010 (2009).

    Article  CAS  Google Scholar 

  14. M. Murariu, A. D. S. Ferreira, M. Pluta, L. Bonnaud, M. Alexandre, and P. Dubois, Eur. Polym. J., 44, 3842 (2008).

    Article  CAS  Google Scholar 

  15. T. Yokohara and M. Yamaguchi, Eur. Polym. J., 44, 677 (2008).

    Article  CAS  Google Scholar 

  16. S. Y. Gu, K. Zhang, J. Ren, and H. Zhan, Carbohydr. Polym., 74, 79 (2008).

    Article  CAS  Google Scholar 

  17. J. Lu, Z. Qiu, and W. Yang, Polymer, 48, 4196 (2007).

    Article  CAS  Google Scholar 

  18. S. Detyothin, A. Kathuria, W. Jaruwattanayon, S. E. M. Selke, and R. l Auras, in Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications, R. Auras, L. T. Lim., S. E. M. Selke, and H. Tsuji, Eds., John Wiley & Sons series New Jersey, 2010, pp 227–272.

  19. T. W. Yoo, H. G. Yoon, S. J. Choi, M. S. Kim, Y. H. Kim, and W. N. Kim, Macromol. Res., 18, 583 (2010).

    Article  CAS  Google Scholar 

  20. K. Oksman, M. Skrifvars, and J. F. Selin, Compos. Sci. Technol., 63, 1317 (2003).

    Article  CAS  Google Scholar 

  21. R. Masirek, Z. Kulinski, D. Chionna, E. Piorkowska, and M. Pracella, J. Appl. Polym. Sci., 105, 255 (2007).

    Article  CAS  Google Scholar 

  22. P. Juntuek, C. Ruksakulpiwat, P. Chumsamrong, and Y. Ruksakulpiwat, J. Appl. Polym. Sci., 125, 745 (2012).

    Article  CAS  Google Scholar 

  23. H. Balakrishnan, A. Hassan, and M. U. Wahit, J. Elastom. Plast., 42, 223 (2010).

    Article  CAS  Google Scholar 

  24. R. Jaratrotkamjorn, C. Khaokong, and V. Tanrahanakul, J. Appl. Polym. Sci., 124, 5027 (2012).

    CAS  Google Scholar 

  25. S. Mahapram and S. Poompradub, Polym. Test., 30, 716 (2011).

    Article  CAS  Google Scholar 

  26. C. Zhang, W. Wang, Y. Huang, Y. Pan, L. Jiang, Y. Dan, Y. Luo, and Z. Peng, Mater. Des., 45, 198 (2013).

    Article  CAS  Google Scholar 

  27. I. R. Gelling and M. Porter, in Natural Rubber Science and Technology, A. D. Roberts, Ed., Oxford University Press, New York, 1988, 359–456.

  28. H. Nishida, in Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications, R. Auras, L. T. Lim, S. E. M. Selke, and H. Tsuji, Eds., John Wiley & Sons series New Jersey, 2010, pp 401–412.

  29. D. Goritz, F. H. Müller, and W. Sietz, Prog. Colloid Polym. Sci., 62, 114 (1977).

    Article  Google Scholar 

  30. S. Coppola, L. Balzano, E. Gioffredi, P. L. Maffettone, and N. Grizzuti, Polymer, 45, 3249 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirilux Poompradub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayutthaya, W.D.N., Poompradub, S. Thermal and mechanical properties of poly(lactic acid)/natural rubber blend using epoxidized natural rubber and poly(methyl methacrylate) as co-compatibilizers. Macromol. Res. 22, 686–692 (2014). https://doi.org/10.1007/s13233-014-2102-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2102-1

Keywords

Navigation