Skip to main content
Log in

Fabrication of natural rubber/epoxidized natural rubber/nanosilica nanocomposites and their physical characteristics

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Epoxidized natural rubber (ENR) was initially prepared from an in situ performic acid epoxidation reaction with 46.09 mol% epoxide groups, and the curing characteristics of the ENR/natural rubber (NR) blend with different blend ratios of ENR were studied using a Monsanto moving die rheometer. The mechanical properties of the blends, such as the tensile strength, modulus at 300% elongation and elongation at break, were also examined. The tensile strength and 300% modulus decreased with increasing ENR content and the elongation at break increased steadily with increasing ENR content. In addition, the scorch time, cure time, maximum torque and torque difference decreased with increasing ENR content. Scanning electron microscopy (SEM) of the tensile fracture surfaces of the rubber blend samples revealed better compatibility between NR and ENR with lower ENR contents. Nanocomposites based on NR/ENR blends with two different ratios, 100/0 and 80/10, reinforced with 10 phr nanosilica were also prepared to examine the effects of ENR on the mechanical properties and morphology of the nanocomposites. SEM showed that ENR assists in the dispersion of nanosilica in the NR matrix, resulting in improved mechanical properties of the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. Gelling, Rubber Chem. Technol., 58, 86 (1985).

    Article  CAS  Google Scholar 

  2. I. R. Gelling and M. Porter, in Natural Rubber Science and Technology, A. D. Robert, Ed., Oxford University Press, Oxford, 1988, Chap. 10.

  3. H. Y. Xu, J. W. Liu, L. Fang, and C. F. Wu, J. Macromol. Sci. B: Phys., 46, 693 (2007).

    Article  CAS  Google Scholar 

  4. F. Cataldo, Macromol. Mater. Eng., 287, 348 (2002).

    Article  CAS  Google Scholar 

  5. Y. Y. Luo, Y. Q. Wang, J. P. Zhong, C. Z. He, Y. Z. Li, and Z. Peng, J. Inorg. Organomet. Polym., 21, 777 (2011).

    Article  CAS  Google Scholar 

  6. S. Varughese and D. K. Tripathy, J. Appl. Polym. Sci., 44, 1847 (1992).

    Article  CAS  Google Scholar 

  7. S. Schaal, A. Y. Coran, and S. K. Mowdood, US Patent 6482884 B1 (2002).

    Google Scholar 

  8. C. J. Lin and W. L. Hergenrother, US Patent 6845797 B2 (2005).

    Google Scholar 

  9. C. Kantala, E. Wimolmala, C. Sirisinha, and N. Sombatsompop, Polym. Adv. Technol., 20, 448 (2009).

    Article  CAS  Google Scholar 

  10. K. M. George, J. K. Varkey, K. T. Thomas, and N. M. Mathew, J. Appl. Polym. Sci., 85, 292 (2002).

    Article  CAS  Google Scholar 

  11. S. Karnda, S. Kannika, K. D. Wilma, and W. M. Jacques, Eur. Polym. J., 51, 69 (2014).

    Article  Google Scholar 

  12. W. D. N. Ayutthaya and S. Poompradub, Macromol. Res., 22, 686 (2014).

    Article  CAS  Google Scholar 

  13. P. L. Teh, Z. A. MohdIshak, A. S. Hashim, J. Karger-Kocsis, and U. S. Ishiaku, J. Appl. Polym. Sci., 94, 2438 (2004).

    Article  CAS  Google Scholar 

  14. P. L. Teh, Z. A. MohdIshak, A. S. Hashim, J. Karger-Kocsis, and U. S. Ishiaku, Eur. Polym. J., 40, 2513 (2004).

    Article  CAS  Google Scholar 

  15. O. Seyvet and P. Nevard, J. Appl. Polym. Sci., 78, 1130 (2000).

    Article  CAS  Google Scholar 

  16. A. Das, S. C. Debnath, D. De, and D. K. Basu, J. Appl. Polym. Sci., 93, 196 (2004).

    Article  CAS  Google Scholar 

  17. S. S. Choi, J. Appl. Polym. Sci., 79, 1127 (2001).

    Article  CAS  Google Scholar 

  18. H. Ismail and H. H. Chia, Eur. Polym. J., 34, 1857 (1998).

    Article  CAS  Google Scholar 

  19. H. Ismail, A. Rusli, and A. A. Rashid, Polym. Test., 24, 856 (2005).

    Article  CAS  Google Scholar 

  20. A. K. Manna, A. K. Bhattacharyya, P. P. De, D. K. Tripathy, S. K. De, and D. G. Peiffer, Polymer, 39, 7113 (1998).

    Article  CAS  Google Scholar 

  21. N. Suzuki, M. Ito, and S. Ono, J. Appl. Polym. Sci., 95, 74 (2005).

    Article  CAS  Google Scholar 

  22. I. Surya, H. Ismail, and A. R. Azura, Polym. Test., 40, 24 (2014).

    Article  CAS  Google Scholar 

  23. P. Sae-oui, C. Sirisinha, U. Thepsuwan, and K. Hatthapanit, Eur. Polym. J., 42, 479 (2006).

    Article  CAS  Google Scholar 

  24. S. J. Park, K. S. Kim, and B. J. Kim, J. Adhes. Sci. Technol., 26, 861 (2012).

    CAS  Google Scholar 

  25. J. H. Yoon, I. H. Yang, U. C. Jeong, K. H. Chung, J. Y. Lee, and J. E. Oh, Polym. Eng. Sci., 53, 992 (2013).

    Article  CAS  Google Scholar 

  26. D. R. Burfield, K. Lim, K. Law, and S. Ng, Polymer, 25, 995 (1984).

    Article  CAS  Google Scholar 

  27. A. A. M. Ward, B. Stoll, W. von Soden, S. Herminghaus, and A. A. Mansour, Macromol. Mater. Eng., 288, 971 (2003).

    Article  CAS  Google Scholar 

  28. L. Mullins, J. Polym. Sci., 19, 225 (1956).

    Article  CAS  Google Scholar 

  29. B. T. Poh, H. Ismail, E. H. Quah, and P. L. Chin, J. Appl. Polym. Sci., 81, 47 (2001).

    Article  CAS  Google Scholar 

  30. H. Ismail and B. T. Poh, Eur. Polym. J., 36, 2403 (2000).

    Article  CAS  Google Scholar 

  31. M. T. Ramesan, G. Mathew, B. Kuriakose, and R. Alex, Eur. Polym. J., 37, 719 (2001).

    Article  CAS  Google Scholar 

  32. S. Toki and B. S. Hsiao, Macromolecules, 36, 5915 (2003).

    Article  CAS  Google Scholar 

  33. J. M Chenal, L. Chazeau, L. Guy, Y. Bomal, and C. Gauthier, Polymer, 48, 1042 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuong Manh Vu or Hyoung Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, C.M., Vu, H.T. & Choi, H.J. Fabrication of natural rubber/epoxidized natural rubber/nanosilica nanocomposites and their physical characteristics. Macromol. Res. 23, 284–290 (2015). https://doi.org/10.1007/s13233-015-3040-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3040-2

Keywords

Navigation