Skip to main content
Log in

Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M n 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of ε-caprolactone, were characterized by 1H NMR, quantitative 13C NMR, GPC, DSC and WAXS. The introduction of the PEO central segment (< 2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 °C resulted in significant degradation of the all synthesized block copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vert M (2007) Polymeric biomaterials: strategies of the past vs. strategies of the future. Prog Pol Sci 32:755–761

    Article  CAS  Google Scholar 

  2. Shah A, Kato S, Shintani N, Kamini N, Nakajima-Kambe T (2014) Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Appl Microbiol Biot 98:3437–3447

    Article  CAS  Google Scholar 

  3. Wei X, Gong C, Gou M, Fu S, Guo Q, Shi S, Luo F, Guo G, Qiu L, Qian Z (2009) Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int J Pharmaceut 381:1–18

    Article  CAS  Google Scholar 

  4. Ishigaki T, Sugano W, Nakanishi A, Tateda M, Ike M, Fujita M (2004) The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere 54:225–233

    Article  CAS  PubMed  Google Scholar 

  5. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mat Res A 55:203–216

    Article  CAS  Google Scholar 

  6. Pitt GC (1990) Poly ε-caprolactone and its copolymers. In: Casin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, p. 71

    Google Scholar 

  7. Höglund A, Hakkarainen M, Albertsson A-C (2007) Degradation profile of poly(ε-caprolactone)-the influence of macroscopic and macromolecular biomaterial design. J Macromol Sci A 44:1041–1046

    Article  CAS  Google Scholar 

  8. Antheunis H, van der Meer J-C, de Geus M, Heise A, Koning CE (2010) Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters. Biomacromolecules 11:1118–1124

    Article  CAS  PubMed  Google Scholar 

  9. Castilla-Cortázar I, Más-Estellés J, Meseguer-Dueñas JM, Escobar Ivirico JL, Marí B, Vidaurre A (2012) Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polym Degrad Stab 97:1241–1248

    Article  CAS  Google Scholar 

  10. Loh XJ (2013) The effect of pH on the hydrolytic degradation of poly(ε-caprolactone)-block-poly(ethylene glycol) copolymers. J Appl Polym Sci 127:2046–2056

    Article  CAS  Google Scholar 

  11. He F, Li S, Vert M, Zhuo R (2003) Enzyme-catalyzed polymerization and degradation of copolymers prepared from ε-caprolactone and poly(ethylene glycol). Polymer 44:5145–5151

    Article  CAS  Google Scholar 

  12. Khatiwala V, Shekhar N, Aggarwal S, Mandal UK (2008) Biodegradation of poly(ε-caprolactone) (PCL) film by Alcaligenes faecalis. J Polym Environ 16:61–67

    Article  CAS  Google Scholar 

  13. Gan Z, Liang Q, Zhang J, Jing X (1997) Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym Degrad Stab 56:209–213

    Article  CAS  Google Scholar 

  14. Ohtaki A, Akakura N, Nakasaki K (1998) Effects of temperature and inoculum on the degradability of poly-ε-caprolactone during composting. Polym Degrad Stab 62:279–284

    Article  CAS  Google Scholar 

  15. Fukushima K, Abbate C, Tabuani D, Gennari M, Rizzarelli P, Camino G (2010) Biodegradation trend of poly(ε-caprolactone) and nanocomposites. Mater Sci Eng C 30:566–574

    Article  CAS  Google Scholar 

  16. Hakkarainen M, Albertsson A-C (2002) Heterogeneous biodegradation of polycaprolactone—low molecular weight products and surface changes. Macromol Chem Phys 203:1357–1363

    Article  CAS  Google Scholar 

  17. Huang M-H, Li S, Hutmacher DW, Schantz J-T, Vacanti CA, Braud C, Vert M (2004) Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ϵ-caprolactone in the presence of poly(ethylene glycol). J Biomed Mater Res A 69A:417–427

    Article  CAS  Google Scholar 

  18. Piao L, Dai Z, Deng M, Chen X, Jing X (2003) Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst. Polymer 44:2025–2031

    Article  CAS  Google Scholar 

  19. Wei Z, Liu L, Yu F, Wang P, Qi M (2009) Synthesis and characterization of poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) triblock copolymers with dibutylmagnesium as catalyst. J Appl Polym Sci 111:429–436

    Article  CAS  Google Scholar 

  20. Colwell JM, Wentrup-Byrne E, George GA, Schué F (2015) A pragmatic calcium-based initiator for the synthesis of polycaprolactone copolymers. Polym Int 64:654–660

    Article  CAS  Google Scholar 

  21. Biela T, Kowalski A, Libiszowski J, Duda A, Penczek S (2006) Progress in polymerization of cyclic esters: mechanisms and synthetic applications. Macromol Symp 240:47–55

    Article  CAS  Google Scholar 

  22. Xu Y, He Y, Wei J, Fan Z, Li S (2008) Morphology and melt crystallization of PCL-PEG diblock copolymers. Macromol Chem Phys 209:1836–1844

    Article  CAS  Google Scholar 

  23. Sun J, He C, Zhuang X, Jing X, Chen X (2011) The crystallization behavior of poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers with asymmetric block compositions. J Polym Res 18:2161–2168

    Article  CAS  Google Scholar 

  24. Takeshita H, Fukumoto K, Ohnishi T, Ohkubo T, Miya M, Takenaka K, Shiomi T (2006) Formation of lamellar structure by competition in crystallization of both components for crystalline–crystalline block copolymers. Polymer 47:8210–8218

    Article  CAS  Google Scholar 

  25. Ponjavic M, Nikolic MS, Jevtic S, Rogan J, Stevanovic S, Djonlagic J (2016) Influence of a low content of PEO segment on the thermal, surface and morphological properties of triblock and diblock PCL copolymers. Macromol Res 24:323–335

    Article  CAS  Google Scholar 

  26. Ponjavic M, Nikolic MS, Nikodinovic-Runic J, Jeremic S, Stevanovic S, Djonlagic J (2017) Degradation behavior of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions. Polym Test 57:66–77

    Article  CAS  Google Scholar 

  27. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Archiv Mikrobiol 38:209–222

    Article  CAS  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  29. Willerding AL, Oliveira LAD, Moreira FW, Germano MG, Chagas AF (2011) Lipase activity among bacteria isolated from amazonian soils. Enzyme Res 2011(720194):5

    Google Scholar 

  30. Šašek V, Vitásek J, Chromcová D, Prokopová I, Brožek J, Náhlík J (2006) Biodegradation of synthetic polymers by composting and fungal treatment. Folia Microbiol 51:425–430

    Article  Google Scholar 

  31. Duda A, Biela T, Libiszowski J, Penczek S, Dubois P, Mecerreyes D, Jéroˆme R (1998) Block and random copolymers of ε-caprolactone. Polym Degrad Stab 59:215–222

    Article  CAS  Google Scholar 

  32. Huang M-H, Li S, Coudane J, Vert M (2003) Synthesis and characterization of block copolymers of ε-caprolactone and DL-lactide initiated by ethylene glycol or poly(ethylene glycol). Macromol Chem Phys 204:1994–2001

    Article  CAS  Google Scholar 

  33. Jiang Y, Mao K, Cai X, Lai S, Chen X (2011) Poly(ethyl glycol) assisting water sorption enhancement of poly(ε-caprolactone) blend for drug delivery. J Appl Polym Sci 122:2309–2316

    Article  CAS  Google Scholar 

  34. Su T-T, Jiang H, Gong H (2008) Thermal stabilities and the thermal degradation kinetics of poly(ε-caprolactone). Polym Plast Technol Eng 47:398–403

    Article  CAS  Google Scholar 

  35. Persenaire O, Alexandre M, Degée P, Dubois P (2001) Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone). Biomacromolecules 2:288–294

    Article  CAS  PubMed  Google Scholar 

  36. Bittiger H, Marchessault RH, Niegisch WD (1970) Crystal structure of poly-ε-caprolactone. Acta Crystallogr B 26:1923–1927

    Article  CAS  Google Scholar 

  37. Zong X-H, Wang Z-G, Hsiao BS, Chu B, Zhou JJ, Jamiolkowski DD, Muse E, Dormier E (1999) Structure and morphology changes in absorbable poly(glycolide) and poly(glycolide-co-lactide) during in vitro degradation. Macromolecules 32:8107–8114

    Article  CAS  Google Scholar 

  38. Huang M-H, Li S, Hutmacher DW, Coudane J, Vert M (2006) Degradation characteristics of poly(ϵ-caprolactone)-based copolymers and blends. J Appl Polym Sci 102:1681–1687

    Article  CAS  Google Scholar 

  39. Cometa S, Bartolozzi I, Corti A, Chiellini F, De Giglio E, Chiellini E (2010) Hydrolytic and microbial degradation of multi-block polyurethanes based on poly(ɛ-caprolactone)/poly(ethylene glycol) segments. Polym Degrad Stab 95:2013–2021

    Article  CAS  Google Scholar 

  40. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103

    Article  PubMed  Google Scholar 

  41. Bosworth LA, Downes S (2010) Physicochemical characterisation of degrading polycaprolactone scaffolds. Polym Degrad Stab 95:2269–2276

    Article  CAS  Google Scholar 

  42. Hakkarainen M (2002) Aliphatic polyesters: Abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113–138

    Article  CAS  Google Scholar 

  43. Zeng J, Chen X, Liang Q, Xu X, Jing X (2004) Enzymatic degradation of poly(l-lactide) and poly(ε-caprolactone) electrospun fibers. Macromol Biosci 4:1118–1125

    Article  CAS  PubMed  Google Scholar 

  44. Li S, Garreau H, Pauvert B, McGrath J, Toniolo A, Vert M (2002) Enzymatic degradation of block copolymerase prepared from ε-caprolactone and poly(ethylene glycol). Biomacromolecules 3:525–530

    Article  CAS  PubMed  Google Scholar 

  45. Fukushima K, Feijoo JL, Yang M-C (2013) Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. Eur Polym J 49:706–717

    Article  CAS  Google Scholar 

  46. Lefebvre F, David C, Vander Wauven C (1994) Biodegradation of polycaprolactone by micro-organisms from an industrial compost of household refuse. Polym Degrad Stab 45:347–353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 172062 and 173048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasna Djonlagic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1. FTIR spectra of PCL and PCECs copolymers before and after hydrolytic and enzymatic degradation. (TIF 133 KB)

10924_2017_1130_MOESM2_ESM.tif

Figure S2. Enzymatic degradation of PCL and PCEC copolymers within agar-based medium using cell free extracts (CFE) of P. aeruginosa PAO1 grown on glucose and oil as a carbon source. (TIF 516 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponjavic, M., Nikolic, M.S., Jeremic, S. et al. Influence of Short Central PEO Segment on Hydrolytic and Enzymatic Degradation of Triblock PCL Copolymers. J Polym Environ 26, 2346–2359 (2018). https://doi.org/10.1007/s10924-017-1130-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1130-2

Keywords

Navigation