Skip to main content
Log in

Tensile Properties of Polylactide/Poly(ethylene glycol) Blends

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The blends of polylactide (PLA) and poly(ethylene glycol) (PEG) with different contents (0, 5, 10, 15, and 20 wt%) and molecular weights (\( \overline{M}_{w} \) 6000, 10,000 and 20,000, called respectively as PEG 6000, PEG 10,000, and PEG 20,000) were prepared by means of melt blending method. The effects of tensile speed, content and molecular weight of the PEG on the tensile properties of the PLA/PEG blends were investigated using a universal testing machine at 24 °C. With increasing tensile speed, the tensile modulus, strength and stress at break of the PLA/PEG blends marginally increased, while the tensile modulus and stress at break declined non-linearly, and the tensile strength dropped nearly linearly with increasing PEG 10,000 content. When the PEG 10,000 content was 5–15 wt%, the tensile strain at break of the PLA/PEG 10,000 blend markedly increased, and then decreased as the PEG 10,000 content exceeded 15 wt%. With increasing the molecular weight of PEG, tensile modulus and strength increased, whereas the tensile strain at break decreased. This showed that the application of right amount of lower molecular weight PEG was more conducive to improving the tensile toughness of the PLA/PEG blends, which was attributed to its better miscibility with PLA and increased mobility of PLA molecular chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  2. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  3. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  4. Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  5. Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ Jr, Ladu BN Jr, Pariza MW (1995) Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food Chem Toxicol 33:273–283

    Article  CAS  Google Scholar 

  6. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  7. Zhao YM, Wang ZY, Wang J, Mai HZ, Yan B, Yang F (2004) Direct synthesis of poly (D, L-lactic acid) by melt polycondensation and its application in drug delivery. J Appl Polym Sci 91:2143–2150

    Article  CAS  Google Scholar 

  8. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30:321–328

    Article  CAS  Google Scholar 

  9. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747

    Article  CAS  Google Scholar 

  10. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  Google Scholar 

  11. Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32:760–768

    Article  CAS  Google Scholar 

  12. Sungsanit K, Kao N, Bhattacharya SN (2012) Properties of linear poly (lactic acid)/polyethylene glycol blends. Polym Eng Sci 52:108–116

    Article  CAS  Google Scholar 

  13. Jacobsen S, Fritz HG (1999) Plasticizing polylactide-the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310

    Article  CAS  Google Scholar 

  14. Zhao QN, Ding Y, Yang B, Ning NY, Fu Q (2013) Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly (lactic acid) (PLA). Polym Test 32:299–305

    Article  CAS  Google Scholar 

  15. Fernández J, Etxeberria A, Sarasua JR (2012) Synthesis, structure and properties of poly (L-lactide-co-ε-caprolactone) statistical copolymers. J Mech Behav Biomed Mater 9:100–112

    Article  Google Scholar 

  16. Grijpma DW, Pennings AJ (1994) (Co) polymers of L-lactide. 1. Synthesis, thermal properties and hydrolytic degradation. Macromol Chem Phys 195:1633–1647

    Article  CAS  Google Scholar 

  17. Grijpma DW, Pennings AJ (1994) (Co) polymers of L-lactide. 2. Mechanical properties. Macromol Chem Phys 195:1649–1663

    Article  CAS  Google Scholar 

  18. Liang JZ, Duan DR, Tang CY, Tsui CP, Chen DZ (2013) Tensile properties of PLLA/PCL composites filled with nanometer calcium carbonate. Polym Test 32:617–621

    Article  CAS  Google Scholar 

  19. Li Y, Shimizu H (2007) Toughening of polylactide by melt blending with a biodegradable poly (ether) urethane elastomer. Macromol Biosci 7:921–928

    Article  CAS  Google Scholar 

  20. Jiang L, Wolcott MP, Zhang JW (2006) Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends. Biomacromolecules 7:199–207

    Article  Google Scholar 

  21. Sheth M, Kumar RA, Davé V, Gross RA, Mccarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly (ethylene glycol). J Appl Polym Sci 66:1495–1505

    Article  CAS  Google Scholar 

  22. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) Thermal and mechanical properties of plasticized poly (L-lactic acid). J Appl Polym Sci 90:1731–1738

    Article  CAS  Google Scholar 

  23. Ward IM (1983) Mechanical properties of solid polymers, 2nd edn. Wiley, Chichester

    Google Scholar 

  24. Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly (L- lactide). Polymer 46:10290–10300

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from the National Science Fund for U1333126 and Fund Research Grant for Science and Technology in Guangzhou, China (2014J4100038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Zhao Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, FJ., Liang, JZ., Zhang, SD. et al. Tensile Properties of Polylactide/Poly(ethylene glycol) Blends. J Polym Environ 23, 407–415 (2015). https://doi.org/10.1007/s10924-015-0718-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-015-0718-7

Keywords

Navigation