Skip to main content
Log in

A Convergent Post-processed Discontinuous Galerkin Method for Incompressible Flow with Variable Density

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a linearized semi-implicit and decoupled finite element method for the incompressible Navier–Stokes equations with variable density. Our method is fully discrete and shown to be unconditionally stable. The velocity equation is solved by an \(H^1\)-conforming finite element method, and an upwind discontinuous Galerkin finite element method with post-processed velocity is adopted for the density equation. The proposed method is proved to be convergent in approximating reasonably smooth solutions in three-dimensional convex polyhedral domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability Statement

Not applicable.

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, Pure and Applied Mathematics. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  2. Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations. J. Comput. Phys. 142, 1–46 (1998)

    Article  MathSciNet  Google Scholar 

  3. An, R.: Error analysis of a new fractional-step method for the incompressible Navier–Stokes equations with variable density. J. Sci. Comput. (2020). https://doi.org/10.1007/s10915-020-01253-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the stokes equations. Calcolo 21(4), 337–344 (1984)

    Article  MathSciNet  Google Scholar 

  5. Bell, J.B., Marcus, D.L.: A second-order projection method for variable-density flows. J. Comput. Phys. 101, 334–348 (1992)

    Article  Google Scholar 

  6. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed Finite Elements, Compatibility Conditions, and Applications. Springer, Berlin (2008)

    Book  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  8. Cai, W., Li, B., Li, Y.: Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimensions. ESAIM: Math. Model. Numer. Anal. (2020). https://doi.org/10.1051/m2an/2020029

    Article  Google Scholar 

  9. Danchin, R.: Density-dependent incompressible fluids in bounded domains. J. Math. Fluid Mech. 8, 333–381 (2006)

    Article  MathSciNet  Google Scholar 

  10. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications, vol. 69. Springer, Berlin (2012)

    MATH  Google Scholar 

  11. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Mathematics, Philadelphia (2011)

    Book  Google Scholar 

  12. Guermond, J.L., Quartapelle, L.: A projection FEM for variable density incompressible flows. J. Comput. Phys. 165, 167–188 (2000)

    Article  MathSciNet  Google Scholar 

  13. Guermond, J.L., Salgado, A.: A fractional step method based on a pressure Poisson equation for incompressible flows with variable density. C. R. Math. 346, 913–918 (2008)

    Article  MathSciNet  Google Scholar 

  14. Guermond, J.L., Salgado, A.: A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228, 2834–2846 (2009)

    Article  MathSciNet  Google Scholar 

  15. Guermond, J.L., Salgado, A.: Error analysis of a fractional time-stepping technique for incompressible flows with variable density. SIAM J. Numer. Anal. 49, 917–940 (2011)

    Article  MathSciNet  Google Scholar 

  16. Ladyzhenskaya, O., Solonnikov, V.: Unique solvability of an initial- and boundary-value problem for viscous incompressible inhomogeneous fluids. J. Sov. Math. 9, 697–749 (1978)

    Article  Google Scholar 

  17. Latché, J.C., Saleh, K.: A convergent staggered scheme for the variable density incompressible Navier–Stokes equations. Math. Comput. 87, 581–632 (2018)

    Article  MathSciNet  Google Scholar 

  18. Li, Y., Li, J., Mei, L., Li, Y.: Mixed stabilized finite element methods based on backward difference/Adams–Bashforth scheme for the time-dependent variable density incompressible flows. Comput. Math. Appl. 70, 2575–2588 (2015)

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Mei, L., Ge, J., Shi, F.: A new fractional time-stepping method for variable density incompressible flows. J. Comput. Phys. 242, 124–137 (2013)

    Article  MathSciNet  Google Scholar 

  20. Liu, C., Walkington, N.J.: Convergence of numerical approximations of the incompressible Navier–Stokes equations with variable density and viscosity. SIAM J. Numer. Anal. 45, 1287–1304 (2007)

    Article  MathSciNet  Google Scholar 

  21. Ortega-Torres, E., Braz e Silva, P., Rojas-Medar, M.: Analysis of an iterative method for variable density incompressible fluids. Annali Dell’universita Di Ferrara’ 55, 129 (2009)

    Article  MathSciNet  Google Scholar 

  22. Pyo, J.-H., Shen, J.: Gauge–Uzawa methods for incompressible flows with variable density. J. Comput. Phys. 221, 181–197 (2007)

    Article  MathSciNet  Google Scholar 

  23. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T.T., Bercea, G.-T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. 43, 1–27 (2016)

    Article  MathSciNet  Google Scholar 

  24. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Funding

The work of B. Li and Z. Yang was supported in part by National Natural Science Foundation of China (NSFC Grant 12071020) and an internal grant of The Hong Kong Polytechnic University (Project 4-ZZKQ). Weifeng Qiu is supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302718).

Author information

Authors and Affiliations

Authors

Contributions

BL, WQ and ZY have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, method, analysis and writing. All authors certify that this material or similar material has not been and will not be submitted to or published in any other publication.

Corresponding author

Correspondence to Weifeng Qiu.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Qiu, W. & Yang, Z. A Convergent Post-processed Discontinuous Galerkin Method for Incompressible Flow with Variable Density. J Sci Comput 91, 2 (2022). https://doi.org/10.1007/s10915-022-01775-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01775-1

Keywords

Mathematics Subject Classification

Navigation