Skip to main content
Log in

Analysis of an iterative method for variable density incompressible fluids

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We derive error bounds for an iterative method used by Okamoto to prove the existence of strong solutions for the equations of nonhomogeneous incompressible fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche C., Girault V.: On the existence and regularity of the solutions of Stokes problem in arbitrary dimension. Proc. Japan Acad. Ser. A Math. Sci. 67(5), 171–175 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Studies in Mathematics and its Applications, vol. 22, 309 p. North-Holland, Amsterdam (1990)

  3. Boldrini J.L., Rojas-Medar M.A.: Global solutions to the equations for the motion of stratified incompressible fluids. Mat. Contemp. 3, 1–8 (1992)

    MATH  MathSciNet  Google Scholar 

  4. Boldrini J.L., Rojas-Medar M.A.: Global strong solutions of the equations for the motion of nonhomogeneous incompressible fluids. In: Conca, C., Gatica, G. (eds) Numerical Methods in Mechanics, Pitman Res. Notes Math. Series 371, pp. 35–45. Longman, Harlow (1997)

    Google Scholar 

  5. Boldrini J.L., Rojas-Medar M.A.: An error estimate uniform in time for spectral semi-Galerkin approximations of the nonhomogeneous Navier-Stokes equations. Numer. Funct. Anal. Optim. 15(7–8), 755–778 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Braz e Silva, P., Rojas-Medar, M.A.: Error bounds for semi-Galerkin approximations of nonhomogeneous incompressible fluids. J. Math. Fluid Mech. doi:10.1007/s00021-007-0255-9

  7. Cattabriga L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308–340 (1961)

    MATH  MathSciNet  Google Scholar 

  8. Conca C., Gormaz R., Ortega-Torres E., Rojas-Medar M.A.: The equations of non-homogeneous asymmetric fluids: an iterative approach. Math. Meth. Appl. Sci. 25(15), 1251–1280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Frolova E., Padula M.: Free boundary problem for a layer of inhomogeneous fluid. Eur. J. Mech. B Fluids 23(4), 665–679 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fujita H., Kato T.: On the Navier-Stokes initial value problem I. Arch. Ration. Mech. Anal. 16(5), 269–315 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guillén-Gonzalez F., Damázio P., Rojas-Medar M.A.: Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion. J. Math. Anal. Appl. 326(1), 468–487 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heywood J.G.: An error estimate uniform in time for spectral semi-Galerkin approximations of the Navier-Stokes problem. Pacific J. Math. 98(2), 333–345 (1982)

    MATH  MathSciNet  Google Scholar 

  13. Heywood J.G., Rannacher R.: Finite element approximation of the nonstationary Navier-Stokes problem I: regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kazhikov A.V.: Solvability of the initial-boundary value problem for the equations of motion of an inhomogeneous viscous incompressible fluid. Dokl. Akad. Nauk SSSR 216, 1008–1010 (1974)

    MathSciNet  Google Scholar 

  15. Kim J.U.: Weak solutions of an initial-boundary value problems for an incompressible viscous fluid with nonnegative density. SIAM J. Math. Anal. 18(1), 89–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ladyzhenskaya, O.A., Solonnikov, V.A.: The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids. In: Boundary value problems of mathematical physics, and related questions of the theory of functions 52, Zap. Naučn Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), pp. 52–109 (1975)

  17. Okamoto H.: On the equation of nonstationary stratified fluid motion: uniqueness and existence of the solutions. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30(3), 615–643 (1984)

    MATH  MathSciNet  Google Scholar 

  18. Padula M.: An existence theorem for nonhomogeneous incompressible fluids. Rend. Circ. Mat. Palermo 2(Suppl. 31), 119–124 (1982)

    Article  MathSciNet  Google Scholar 

  19. Salvi R.: Error estimates for the spectral Galerkin approximations of the solutions of Navier-Stokes type equations. Glasgow Math. J. 31(2), 199–211 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Salvi R.: The equations of viscous incompressible nonhomogeneous fluid: on the existence and regularity. J. Austral. Math. Soc. Ser. B 33(1), 94–110 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Simon J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J. Math. Anal. 21(5), 1093–1117 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Temam, R.: Navier-Stokes equations: theory and numerical analysis, 3rd edn. In: Studies in Mathematics and its Applications, vol. 2. North-Holland Publishing Co., Amsterdam (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elva Ortega-Torres.

Additional information

The authors Ortega-Torres and Rojas-Medar are partially supported by FONDECYT-Chile grant No. 1040205 and No. 7040187. The authors Braz e Silva and Rojas-Medar are partially supported by CAPES/MECD-DGU Brazil/Spain grant No. 117/06.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega-Torres, E., Braz e Silva, P. & Rojas-Medar, M. Analysis of an iterative method for variable density incompressible fluids. Ann. Univ. Ferrara 55, 129–151 (2009). https://doi.org/10.1007/s11565-009-0060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-009-0060-x

Keywords

Mathematics Subject Classification (2000)

Navigation