Skip to main content

An Implicit High-Order Discontinuous Galerkin Approach for Variable Density Incompressible Flows

  • Conference paper
  • First Online:
Droplet Interactions and Spray Processes

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 121))

Abstract

In this work we present a high-order discontinuous Galerkin approach for the simulation of variable density incompressible (VDI) flows. Here, the density is treated as a purely advected property tracking possibly multiple (more than two) components, while the fluids interface is captured in a diffuse fashion by the high-degree polynomial solution thus not requiring any geometrical reconstruction. Specific care is devoted to deal with density over/undershoots, spurious oscillations at flows interfaces and Godunov numerical fluxes at inter-element boundaries. Time integration is performed with high-order implicit schemes thus preventing any time step restriction condition. Promising results with high-degree polynomial representation and relatively coarse meshes are achieved on numerical experiments involving high-density ratios (water–air) and the possible interaction of more than two components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Springer, Berlin (2008)

    Google Scholar 

  2. Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Massa, F.: Linearly implicit Rosenbrock-type Runge-Kutta schemes for the Discontinuous Galerkin solution of compressible and incompressible unsteady flows. Comput. Fluids (2015). https://doi.org/10.1016/j.compfluid.2015.06.007

  3. Elsworth, D.T., Toro, E.F.: Riemann solvers for solving the incompressible Navier-Stokes equations using the artificial compressibility method. College of Aeronautics, Cranfield Institute of Technology, 9208 (1992)

    Google Scholar 

  4. Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations. J. Comput. Phys. (2006). https://doi.org/10.1016/j.jcp.2006.03.006

    Article  MathSciNet  MATH  Google Scholar 

  5. Bassi, F., Massa, F., Botti, L., Colombo, A.: Artificial compressibility Godunov fluxes for variable density incompressible flows. Comput. Fluids (2018). https://doi.org/10.1016/j.compfluid.2017.09.010

    Article  MathSciNet  MATH  Google Scholar 

  6. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Proceedings of 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, pp. 99–108 (1997)

    Google Scholar 

  7. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Meth. Part. D. E. 16, 365–378 (2000)

    Article  MathSciNet  Google Scholar 

  8. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  Google Scholar 

  9. Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin Methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Nevada (2006)

    Google Scholar 

  10. Klöckner, A., Warburton, T., Hesthaven, J.S.: Viscous shock capturing in a time-explicit discontinuous Galerkin Method. Math. Model. Nat. Phenom. (2011). https://doi.org/10.1051/mmnp/20116303

    Article  MathSciNet  MATH  Google Scholar 

  11. Jaffre, J., Johnson, C., Szepessy, A.: Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Models Methods Appl. Sci. 5(3), 286–367 (1995)

    Article  MathSciNet  Google Scholar 

  12. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (2010)

    Google Scholar 

  13. Söderlind, G.: Digital filters in adaptive time-stepping. ACM Trans. Math. Softw. V 1–24 (2005)

    Google Scholar 

  14. Saad, Y., Shults, M.H.: A generalised minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  Google Scholar 

  15. Smith, B., Bjørstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  16. Ritter, A.: Die Fortpflanzung der Wasserwellen. Z. Ver. Deut. Ing 36, 947–954 (1892)

    Google Scholar 

  17. Dressler, F.: Comparison of theories and experiments for the hydraulic dam-break wave. Proc. Int. Assoc. of Sci. Hydrol. Assemblée Générale 3(38), 319–328 (1954)

    Google Scholar 

Download references

Acknowledgements

F. Massa is supported by the Supporting Talented Researchers (STaRS) programm of the University of Bergamo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Carlo Massa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Massa, F.C., Bassi, F., Botti, L., Colombo, A. (2020). An Implicit High-Order Discontinuous Galerkin Approach for Variable Density Incompressible Flows. In: Lamanna, G., Tonini, S., Cossali, G., Weigand, B. (eds) Droplet Interactions and Spray Processes. Fluid Mechanics and Its Applications, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-33338-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33338-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33337-9

  • Online ISBN: 978-3-030-33338-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics