Skip to main content
Log in

HiMod Reduction of Advection–Diffusion–Reaction Problems with General Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We extend the hierarchical model reduction procedure previously introduced in Ern et al. (in: Kunisch, Of, Steinbach (eds) Numerical mathematics and advanced applications, Springer, Berlin, pp 703–710, 2008) and Perotto et al. (Multiscale Model Simul 8(4):1102–1127, 2010) to deal with general boundary conditions, enforcing their prescription in the basis function set. This is achieved by solving a Sturm–Liouville Eigenvalue problem. We analyze this approach and provide a convergence analysis for the associated error in the case of a linear advection–diffusion–reaction problem in rectangles (2D) and slabs (3D). Numerical results confirm the theoretical investigation and the reliability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. LifeV is an open source finite element library developed by MOX at Politecnico di Milano, Italy, the Department of Mathematics at EPFL, Switzerland and the Department of Mathematics and Computer Science at Emory University, USA (https://cmcsforge.epfl.ch/doxygen/lifev/).

References

  1. Aletti, M.C.: Educated basis for hierarchical model reduction in 2D and 3D. Master thesis, Politecnico di Milano, Italy (a.y. 2012–2013)

  2. Aletti, M., Bortolossi, A., Perotto, S., Veneziani, A.: One-dimensional surrogate models for advection-diffusion problems. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds.) Numerical Mathematics and Advanced Applications, Lecture Notes Computer Science and Engineering, vol. 103, pp. 447–456. Springer (2015)

  3. Azaiez, M., Shen, J., Xu, C., Zhuang, Q.: A Laguerre–Legendre spectral method for the Stokes problem in a semi-infinite channel. SIAM J. Numer. Anal. 47(1), 271–292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Badia, S., Nobile, F., Vergara, C.: Fluidstructure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227(14), 7027–7051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barone, A.: Parallel and multilevel techniques for hierarchical model reduction, Master thesis, Politecnico di Milano, Italy (a.y. 2013–2014)

  6. Blanco, P.J., Mansilla Alvarez, L.A., Feijoo, R.A.: Hybrid element-based approximation for the Navier–Stokes equations in pipe-like domains. Comput. Methods Appl. Mech. Eng. 283, 971–993 (2015)

    Article  MathSciNet  Google Scholar 

  7. Blanco, P.J., Watanabe, S.M., Passos, M.A.R.F., Lemos, P.A., Feijoo, R.A.: An anatomically detailed arterial network model for one-dimensional computational hemodynamic. IEEE Trans. Biomed. Eng. 62, 736–753 (2015)

    Article  Google Scholar 

  8. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, Mineola (2001)

    MATH  Google Scholar 

  9. Canuto, C., Hussaini, Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Canuto, C., Hussaini, Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    MATH  Google Scholar 

  11. Canuto, C., Maday, Y., Quarteroni, A.: Analysis of the combined finite element and Fourier interpolation. Numer. Math. 39(2), 205–220 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Canuto, C., Maday, Y., Quarteroni, A.: Combined finite element and spectral approximation of the Navier–Stokes equations. Numer. Math. 44(2), 201–217 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  MATH  Google Scholar 

  14. Ern, A., Perotto, S., Veneziani, A.: Hierarchical model reduction for advection–diffusion–reaction problems. In: Kunisch, K., Of, G., Steinbach, O. (eds.) Numerical Mathematics and Advanced Applications, pp. 703–710. Springer, Berlin (2008)

    Chapter  Google Scholar 

  15. Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  16. Formaggia, L., Quarteroni, A., Veneziani, A.: Multiscale models for the vascular system. In: Formaggia, L., Quarteroni, A., Veneziani, A. (eds.) Cardiovascular Mathematics, pp. 395–446. Springer, Berlin (2009)

    Chapter  Google Scholar 

  17. Guzzetti, S., Perotto, S., Veneziani, A.: Hierarchical model reduction in cylindrical domains. MOX report 51/2016, Dipartimento di Matematica, Politecnico di Milano

  18. Hecth, F.: New developement in Freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  Google Scholar 

  19. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  20. Landau, L.: Monotonicity and bounds on Bessel functions. Mathematical physics and quantum field theory. Electron. J. Differ. Equ. Conf. 04, 147–154 (2000)

    MATH  Google Scholar 

  21. Lions, J.L., Magenes, E.: Non Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  22. Mansilla Alvarez, L.A., Blanco, P.J., Feijoo, R.A., Bulant, C.A., Dari, E.A., Veneziani, A.: Transversally enriched pipe element method (TEPEM). An effective numerical approach for blood flow modeling. Int. J. Numer. Methods Biomed. Eng. 33, e2808 (2017)

    Article  MathSciNet  Google Scholar 

  23. Ohlberger, M., Smetana, K.: A dimensional reduction approach based on the application of reduced basis methods in the framework of hierarchical model reduction. SIAM J. Sci. Comput. 36(2), A714–A736 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Osiadacz, A.: Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston (1987)

    MATH  Google Scholar 

  25. Peiró, J., Veneziani, A.: Reduced models for the cardiovascular system. In: Formaggia, L., Quarteroni, A., Veneziani, A. (eds.) Cardiovascular Mathematics, pp. 347–394. Springer, Berlin (2009)

    Chapter  Google Scholar 

  26. Perotto, S.: Hierarchical model (Hi-Mod) reduction in non-rectilinear domains. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds.) Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computer Science and Engineering, vol. 98, pp. 477–485. Springer, Cham (2014)

  27. Perotto, S., Ern, A., Veneziani, A.: Hierarchical local model reduction for elliptic problems: a domain decomposition approach. Multiscale Model. Simul. 8(4), 1102–1127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Perotto, S., Reali, A., Rusconi, P., Veneziani, A.: HIGAMod: A Hierarchical IsoGeometric Approach for MODel reduction in curved pipes. Comput. Fluids 142, 121–129 (2016)

    MathSciNet  Google Scholar 

  29. Perotto, S., Veneziani, A.: Coupled model and grid adaptivity in hierarchical reduction of elliptic problems. J. Sci. Comput. 60(3), 505–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Perotto, S., Zilio, A.: Hierarchical model reduction: three different approaches. In: Cangiani, A., Davidchack, R.L., Georgoulis, E., Gorban, A.N., Levesley, J., Tretyakov, M.V. (eds.) Numerical Mathematics and Advanced Applications, pp. 851–859. Springer, Berlin (2013)

    Google Scholar 

  31. Perotto, S., Zilio, A.: Space-time adaptive hierarchical model reduction for parabolic equations. Adv. Model. Simul. Eng. Sci. 2(25), 1–45 (2015)

    Google Scholar 

  32. Pinchover, Y., Rubinstein, J.: An Introduction to Partial Differential Equations. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  33. Quarteroni, A., Veneziani, A., Vergara, C.: Geometric multiscale modeling of the circulatory system between theory and practice. Comput. Methods Appl. Mech. Eng. 302, 193–252 (2016)

    Article  Google Scholar 

  34. Salsa, S.: Partial Differential Equations in Action. Springer, Milan (2015)

    MATH  Google Scholar 

  35. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  36. Vogelius, M., Babuška, I.: On a dimensional reduction method. I. The optimal selection of basis functions. Math. Comput. 37, 31–46 (1981)

    MathSciNet  MATH  Google Scholar 

  37. Vogelius, M., Babuška, I.: On a dimensional reduction method. II. Some approximation-theoretic results. Math. Comput. 37, 47–68 (1981)

    MathSciNet  MATH  Google Scholar 

  38. Vogelius, M., Babuška, I.: On a dimensional reduction method. III. A posteriori error estimation and an adaptive approach. Math. Comput. 37, 361–384 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zielinski, L.: Asymptotic distribution of eigenvalues for elliptic boundary value problems. Asymptot. Anal. 16(3), 181–201 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second and the third authors acknowledge the support of NSF Grant DMS-1419060 “Hierarchical Model Reduction Techniques for Incompressible Fluid-Dynamics and Fluid-Structure Interaction Problems” for this research. The authors wish to thank also Prof. Sandro Salsa for fruitful discussions concerning the analysis of the method, and Pablo J. Blanco for hosting the first author for one month at Laboratório Nacional de Computacao Científica in Petrópolis, Brazil. This article has been partially supported by Istituto Nazionale di Alta Matematica “Francesco Severi” (IT) Project (GNCS2017 Metodi numerici avanzati combinati con tecniche di riduzione computazionale per PDEs parametrizzate ed applicazioni).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Perotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aletti, M.C., Perotto, S. & Veneziani, A. HiMod Reduction of Advection–Diffusion–Reaction Problems with General Boundary Conditions. J Sci Comput 76, 89–119 (2018). https://doi.org/10.1007/s10915-017-0614-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0614-5

Keywords

Mathematics Subject Classification

Navigation