Skip to main content
Log in

Analytical solutions to a nonlinear diffusion–advection equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we construct some exact and analytical solutions to a nonlinear diffusion and advection model (Pudasaini in Eng Geol 202: 62–73, 2016) using the Lie symmetry, travelling wave, generalized separation of variables, and boundary layer methods. The model in consideration can be viewed as an extension of viscous Burgers equation, but it describes significantly different physical phenomenon. The nonlinearity in the model is associated with the quadratic diffusion and advection fluxes which are described by the sub-diffusive and sub-advective fluid flow in general porous media and debris material. We also observe that different methods consistently produce similar analytical solutions. This highlights the intrinsic characteristics of the flow of fluid in porous material. The nonlinear diffusion and advection is characterized by a gradually thinning tail that stretches to the rear of the fluid and the evolution of forward advecting frontal bore head, in contrast to the classical linear diffusion and advection. Additionally, we compare solutions for the linear and nonlinear diffusion and advection models highlighting the similarities and differences. The analytical solutions constructed in this paper and the existing high-resolution numerical solution presented previously for the nonlinear diffusion and advection model independently support each other. This implies that the exact and analytical solutions constructed here are physically meaningful and can potentially be applied to calculate the complex nonlinear re-distribution of fluid in porous landscape, and debris and porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barenblatt, G.I.: On some unsteady motions of a liquid or a gas in a porous medium. Prikl. Mat. Mekh. 16(1), 67–78 (1952). (in Russian)

    MathSciNet  Google Scholar 

  2. Barenblatt, G.I.: On some class of solutions of the one-dimensional problem of nonsteady filtration of a gas in a porous medium. Prikl. Mat. Mekh. 17, 739–742 (1953). (in Russian)

    MathSciNet  Google Scholar 

  3. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, New Yrok (1972)

    MATH  Google Scholar 

  4. Boon, J.P., Lutsko, J.F.: Nonlinear diffusion from Einstein’s master equation. EPL 80(2007), 60006 (2007). https://doi.org/10.1209/0295-5075/80/60006

    Article  Google Scholar 

  5. Cole, J.D.: On a quasilinear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9(3), 225–236 (1951)

    Article  MathSciNet  Google Scholar 

  6. Cushman-Roisin, B., Beckers, J.-M.: Introduction to Geophysical Fluid Dynamics. Academic Press, Amsterdam (2011)

    MATH  Google Scholar 

  7. Dagan, G.: Flow and Transport in Porous Formations, p. 465. Springer, Berlin (1989)

    Book  Google Scholar 

  8. Darcy, H.P.G.: Lesfontanes publiques de Ia ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  9. Daskalopoulos, P.: Lecture No 2 Degenerate Diffusion Free boundary problems. Columbia University, IAS Summer Program June (2009)

  10. De Marsily, G.: Quantitative Hydrogeology: Groundwater Hydrology for Engineers, p. 464. Academic Press, Cambridge (1986)

    Google Scholar 

  11. Dupuit, J.: Estudes Theoriques et Pratiques sur le mouvement des Eaux dans les canaux decouverts et a travers les terrains permeables, 2nd edn. Dunod, Paris (1863)

    Google Scholar 

  12. Durlofsky, L., Brady, J.F.: Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30(11), 3329–3341 (1987)

    Article  Google Scholar 

  13. Edwards, M.: Exact solutions of nonlinear diffusion-convection equations. PhD thesis, Department of Mathematics, University of Wollongong. http://ro.uow.edu.au/theses/1546 (1997)

  14. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society (2010)

  15. Genevois, R., Ghirotti, M.: The 1963 Vaiont Landslide. Giornale di Geologia Applicata 1(2005), 41–52 (2005). https://doi.org/10.1474/GGA.2005-01.0-05.0005

    Article  Google Scholar 

  16. Ghosh Hajra, S., Kandel, S., Pudasaini, S.P.: Lie symmetry solutions for two-phase mass flows. Int. J. Non-Linear Mech. 77, 325–341 (2015)

    Article  Google Scholar 

  17. Ghosh Hajra, S., Kandel, S., Pudasaini, S.P.: Optimal systems of Lie subalgebras for a two-phase mass flow. Int. J. Non-Linear Mech. 88, 109–121 (2017)

    Article  Google Scholar 

  18. Ghosh Hajra, S., Kandel, S., Pudasaini, S.P.: On analytical solutions of a two-phase mass flow model. Nonlinear Anal. Real World Appl. 41, 412–427 (2018)

    Article  MathSciNet  Google Scholar 

  19. Hayek, M.: A family of analytical solutions of a nonlinear diffusion-convection equation. Physica A Stat. Mech. Appl. 490, 1434–1445 (2018)

    Article  MathSciNet  Google Scholar 

  20. Hopf, E.: The partial differential equation \(u_t + u u_x = \mu u_{xx}\). Commun. Pure Appl. Math. 3, 201–230 (1950)

    Article  Google Scholar 

  21. Khattri, K.B.: Sub-diffusive and Sub-advective Viscous Fluid Flows in Debris and Porous Media. M. Phil. Dissertation, Kathmandu University, School of Science, Kavre, Dhulikhel, Nepal (2014)

  22. De Loubens, R., Ramakrishnan, T.S.: Asymptotic solution of a nonlinear advection-diffusion equation. Quart. Appl. Math. 69, 389401 (2011)

    Article  MathSciNet  Google Scholar 

  23. Lutsko, J.F., Boon, J.P.: Generalized Diffusion. arXiv:cond-mat/0508231 (2007)

  24. Mergili, M., Fischer, J.-T., Krenn, J., Pudasaini, S.P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model Dev. 10(2), 553–569 (2017)

    Article  Google Scholar 

  25. Miao, H., Wang, G., Yin, K., Kamai, T., Li., Y.: Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China. Eng. Geol. (2014). https://doi.org/10.1016j.enggeo.2013.12.017

  26. Philip, J.R.: Exact solutions for redistribution by nonlinear convection-diffusion. J. Austral. Math. Soc. Ser. B 33, 363 (1992)

    Article  MathSciNet  Google Scholar 

  27. Polyanin, A.D., Zhurov, A.I.: Methods of generalized and functional separation of variables in hydrodynamic and heat-and mass-transfer equations. Theor. Found. Chem. Eng. 36(3), 201–213 (2002)

    Article  Google Scholar 

  28. Pudasaini, S.P.: A novel description of fluid flow in porous and debris materials. Eng. Geol. 202, 62–73 (2016)

    Article  Google Scholar 

  29. Pudasaini, S.P.: A general two-phase debris flow model. J. Geophys. Res. 117(F03010), 1–28 (2012)

    Google Scholar 

  30. Pudasaini, S.P.: Some exact solutions for debris and avalanche flows. Phys. Fluids 23(4), 043301 (2011)

    Article  Google Scholar 

  31. Pudasaini, S.P., Hutter, K.: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, Berlin (2007)

  32. Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics 1(5), 318–333 (1931)

    Article  Google Scholar 

  33. Salmon, R.: Partial Differential Equations. Lecture notes (Spring quarter, 2001), SIO 203C. http://pordlabs.ucsd.edu/rsalmon/PDE.html (2001)

  34. Smyth, N.F., Hill, J.H.: High-order nonlinear diffusion. IMA J. Appl. Math. 40, 73–86 (1988)

    Article  MathSciNet  Google Scholar 

  35. Socolofsky, S.A., Jirka, G.H.: Environmental Fluid Mechanics 1: Mixing and Transport Processes in the Environment. Coastal and Ocean Engineering Division, 5th edn. Texas A&M University, Texas (2005)

    Google Scholar 

  36. Tai, Y.C., Kuo, C.Y.: Modelling shallow debris flows of the Coulomb-mixture type over temporally varying topography. Nat. Hazards Earth Syst. Sci. 12, 269–280 (2012)

    Article  Google Scholar 

  37. Vazquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  38. Vazquez, J.L.: Barenblatt solutions and asymptotic behavior for a nonlinear fractional heat equation of porous medium type. arXiv:1205.6332v2 (2011)

  39. Wang, J.-J., Zhao, D., Liang, Y., Wen, H.-B.: Angle of repose of landslide debris deposits induced by 2008 Sichuan Earthquake. Eng. Geol. 156, 103–110 (2013)

    Article  Google Scholar 

  40. Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3 (1986)

    Article  Google Scholar 

  41. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  42. Yang, H.Q., Lan, Y.F., Lu, L., Zhou, X.P.: A quasi-three-dimensional spring-deformable-block model for runout analysis of rapid landslide motion. Eng. Geol. 185, 20–32 (2015)

    Article  Google Scholar 

  43. Zhang, M., Yin, Y., Wu, S., Zhang, Y., Han, J.: Dynamics of the Niumiangou Creek rock avalanche triggered by 2008 Ms 80 Wenchuan earthquake, Sichuan, China. Landslides 8(3), 363–371 (2011)

    Article  Google Scholar 

  44. Zhang, M., Yin, Y.: Dynamics, mobility-controlling factors and transport mechanisms of rapid long-runout rock avalanches in China. Eng. Geol. 167, 37–58 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the German Research Foundation (DFG) through the research projects, PU 386/3-1: “Development of a GIS-based Open Source Simulation Tool for Modelling General Avalanche and Debris Flows over Natural Topography” within a transnational research project, D-A-CH, and PU 386/5-1: “A novel and unified solution to multi-phase mass flows”: U\(^\text {MultiSol}\). Santosh Kandel’s research is partially supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation, by the SNF Grant No. 200020 172498/1, and by the COST Action MP1405 QSPACE, supported by COST(European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva P. Pudasaini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pudasaini, S.P., Ghosh Hajra, S., Kandel, S. et al. Analytical solutions to a nonlinear diffusion–advection equation. Z. Angew. Math. Phys. 69, 150 (2018). https://doi.org/10.1007/s00033-018-1042-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-1042-6

Mathematics Subject Classification

Keywords

Navigation