HiMod Reduction of Advection–Diffusion–Reaction Problems with General Boundary Conditions

  • Matteo C. Aletti
  • Simona Perotto
  • Alessandro Veneziani
Article
  • 24 Downloads

Abstract

We extend the hierarchical model reduction procedure previously introduced in Ern et al. (in: Kunisch, Of, Steinbach (eds) Numerical mathematics and advanced applications, Springer, Berlin, pp 703–710, 2008) and Perotto et al. (Multiscale Model Simul 8(4):1102–1127, 2010) to deal with general boundary conditions, enforcing their prescription in the basis function set. This is achieved by solving a Sturm–Liouville Eigenvalue problem. We analyze this approach and provide a convergence analysis for the associated error in the case of a linear advection–diffusion–reaction problem in rectangles (2D) and slabs (3D). Numerical results confirm the theoretical investigation and the reliability of the proposed approach.

Keywords

Model reduction Spectral/finite element combined approximation Robin boundary conditions Sturm–Liouville Eigenvalue problem 

Mathematics Subject Classification

65N30 65N35 76M10 76M22 78M34 

Notes

Acknowledgements

The second and the third authors acknowledge the support of NSF Grant DMS-1419060 “Hierarchical Model Reduction Techniques for Incompressible Fluid-Dynamics and Fluid-Structure Interaction Problems” for this research. The authors wish to thank also Prof. Sandro Salsa for fruitful discussions concerning the analysis of the method, and Pablo J. Blanco for hosting the first author for one month at Laboratório Nacional de Computacao Científica in Petrópolis, Brazil. This article has been partially supported by Istituto Nazionale di Alta Matematica “Francesco Severi” (IT) Project (GNCS2017 Metodi numerici avanzati combinati con tecniche di riduzione computazionale per PDEs parametrizzate ed applicazioni).

References

  1. 1.
    Aletti, M.C.: Educated basis for hierarchical model reduction in 2D and 3D. Master thesis, Politecnico di Milano, Italy (a.y. 2012–2013)Google Scholar
  2. 2.
    Aletti, M., Bortolossi, A., Perotto, S., Veneziani, A.: One-dimensional surrogate models for advection-diffusion problems. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds.) Numerical Mathematics and Advanced Applications, Lecture Notes Computer Science and Engineering, vol. 103, pp. 447–456. Springer (2015)Google Scholar
  3. 3.
    Azaiez, M., Shen, J., Xu, C., Zhuang, Q.: A Laguerre–Legendre spectral method for the Stokes problem in a semi-infinite channel. SIAM J. Numer. Anal. 47(1), 271–292 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Badia, S., Nobile, F., Vergara, C.: Fluidstructure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227(14), 7027–7051 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Barone, A.: Parallel and multilevel techniques for hierarchical model reduction, Master thesis, Politecnico di Milano, Italy (a.y. 2013–2014)Google Scholar
  6. 6.
    Blanco, P.J., Mansilla Alvarez, L.A., Feijoo, R.A.: Hybrid element-based approximation for the Navier–Stokes equations in pipe-like domains. Comput. Methods Appl. Mech. Eng. 283, 971–993 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Blanco, P.J., Watanabe, S.M., Passos, M.A.R.F., Lemos, P.A., Feijoo, R.A.: An anatomically detailed arterial network model for one-dimensional computational hemodynamic. IEEE Trans. Biomed. Eng. 62, 736–753 (2015)CrossRefGoogle Scholar
  8. 8.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, Mineola (2001)MATHGoogle Scholar
  9. 9.
    Canuto, C., Hussaini, Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)MATHGoogle Scholar
  10. 10.
    Canuto, C., Hussaini, Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)MATHGoogle Scholar
  11. 11.
    Canuto, C., Maday, Y., Quarteroni, A.: Analysis of the combined finite element and Fourier interpolation. Numer. Math. 39(2), 205–220 (1982)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Canuto, C., Maday, Y., Quarteroni, A.: Combined finite element and spectral approximation of the Navier–Stokes equations. Numer. Math. 44(2), 201–217 (1984)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Ern, A., Perotto, S., Veneziani, A.: Hierarchical model reduction for advection–diffusion–reaction problems. In: Kunisch, K., Of, G., Steinbach, O. (eds.) Numerical Mathematics and Advanced Applications, pp. 703–710. Springer, Berlin (2008)CrossRefGoogle Scholar
  15. 15.
    Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press, Oxford (2011)CrossRefGoogle Scholar
  16. 16.
    Formaggia, L., Quarteroni, A., Veneziani, A.: Multiscale models for the vascular system. In: Formaggia, L., Quarteroni, A., Veneziani, A. (eds.) Cardiovascular Mathematics, pp. 395–446. Springer, Berlin (2009)CrossRefGoogle Scholar
  17. 17.
    Guzzetti, S., Perotto, S., Veneziani, A.: Hierarchical model reduction in cylindrical domains. MOX report 51/2016, Dipartimento di Matematica, Politecnico di MilanoGoogle Scholar
  18. 18.
    Hecth, F.: New developement in Freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetGoogle Scholar
  19. 19.
    Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2013)MATHGoogle Scholar
  20. 20.
    Landau, L.: Monotonicity and bounds on Bessel functions. Mathematical physics and quantum field theory. Electron. J. Differ. Equ. Conf. 04, 147–154 (2000)MATHGoogle Scholar
  21. 21.
    Lions, J.L., Magenes, E.: Non Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)CrossRefMATHGoogle Scholar
  22. 22.
    Mansilla Alvarez, L.A., Blanco, P.J., Feijoo, R.A., Bulant, C.A., Dari, E.A., Veneziani, A.: Transversally enriched pipe element method (TEPEM). An effective numerical approach for blood flow modeling. Int. J. Numer. Methods Biomed. Eng. 33, e2808 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ohlberger, M., Smetana, K.: A dimensional reduction approach based on the application of reduced basis methods in the framework of hierarchical model reduction. SIAM J. Sci. Comput. 36(2), A714–A736 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Osiadacz, A.: Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston (1987)MATHGoogle Scholar
  25. 25.
    Peiró, J., Veneziani, A.: Reduced models for the cardiovascular system. In: Formaggia, L., Quarteroni, A., Veneziani, A. (eds.) Cardiovascular Mathematics, pp. 347–394. Springer, Berlin (2009)CrossRefGoogle Scholar
  26. 26.
    Perotto, S.: Hierarchical model (Hi-Mod) reduction in non-rectilinear domains. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds.) Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computer Science and Engineering, vol. 98, pp. 477–485. Springer, Cham (2014)Google Scholar
  27. 27.
    Perotto, S., Ern, A., Veneziani, A.: Hierarchical local model reduction for elliptic problems: a domain decomposition approach. Multiscale Model. Simul. 8(4), 1102–1127 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Perotto, S., Reali, A., Rusconi, P., Veneziani, A.: HIGAMod: A Hierarchical IsoGeometric Approach for MODel reduction in curved pipes. Comput. Fluids 142, 121–129 (2016)MathSciNetGoogle Scholar
  29. 29.
    Perotto, S., Veneziani, A.: Coupled model and grid adaptivity in hierarchical reduction of elliptic problems. J. Sci. Comput. 60(3), 505–536 (2014)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Perotto, S., Zilio, A.: Hierarchical model reduction: three different approaches. In: Cangiani, A., Davidchack, R.L., Georgoulis, E., Gorban, A.N., Levesley, J., Tretyakov, M.V. (eds.) Numerical Mathematics and Advanced Applications, pp. 851–859. Springer, Berlin (2013)Google Scholar
  31. 31.
    Perotto, S., Zilio, A.: Space-time adaptive hierarchical model reduction for parabolic equations. Adv. Model. Simul. Eng. Sci. 2(25), 1–45 (2015)Google Scholar
  32. 32.
    Pinchover, Y., Rubinstein, J.: An Introduction to Partial Differential Equations. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  33. 33.
    Quarteroni, A., Veneziani, A., Vergara, C.: Geometric multiscale modeling of the circulatory system between theory and practice. Comput. Methods Appl. Mech. Eng. 302, 193–252 (2016)CrossRefGoogle Scholar
  34. 34.
    Salsa, S.: Partial Differential Equations in Action. Springer, Milan (2015)MATHGoogle Scholar
  35. 35.
    Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer, Berlin (2006)MATHGoogle Scholar
  36. 36.
    Vogelius, M., Babuška, I.: On a dimensional reduction method. I. The optimal selection of basis functions. Math. Comput. 37, 31–46 (1981)MathSciNetMATHGoogle Scholar
  37. 37.
    Vogelius, M., Babuška, I.: On a dimensional reduction method. II. Some approximation-theoretic results. Math. Comput. 37, 47–68 (1981)MathSciNetMATHGoogle Scholar
  38. 38.
    Vogelius, M., Babuška, I.: On a dimensional reduction method. III. A posteriori error estimation and an adaptive approach. Math. Comput. 37, 361–384 (1981)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Zielinski, L.: Asymptotic distribution of eigenvalues for elliptic boundary value problems. Asymptot. Anal. 16(3), 181–201 (1998)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis LionsInria Paris, Sorbonne Universités UPMC Univ Paris 6ParisFrance
  2. 2.MOX, Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
  3. 3.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  4. 4.School of Advanced Studies IUSSPaviaItaly

Personalised recommendations