Skip to main content

Advertisement

Log in

Influence of Evolutionary Allometry on Rates of Morphological Evolution and Disparity in strictly Subterranean Moles (Talpinae, Talpidae, Lipotyphla, Mammalia)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The adaptation to a particular function could directly influence the morphological evolution of an anatomical structure as well as its rates. The humeral morphology of moles (subfamily Talpinae) is highly modified in response to intense burrowing and fully fossorial lifestyle. However, little is known of the evolutionary pathways that marked its diversification in the two highly fossorial moles tribes Talpini and Scalopini. We used two-dimensional landmark-based geometric morphometrics and comparative methods to understand which factors influenced the rates and patterns of the morphological evolution of the humerus in 53 extant and extinct species of the Talpini (22 extant plus 12 extinct) and Scalopini (six extant plus 13 extinct) tribes, for a total of 623 humeri. We first built a synthetic phylogeny of extinct and extant taxa of the subfamily Talpinae based on all the available information from known phylogenies, molecular data, and age ranges of fossil records. We tested for evolutionary allometry by means of multivariate regression of shape on size variables. Evolutionary allometric trajectories exhibited convergence of humeral shape between the two tribes, even when controlling for phylogeny, though a significant differences in the evolutionary rates was found between the two tribes. Talpini, unlike Scalopini, seem to have reached a robust fossorial morphology early during their evolution, and their shape disparity did not change, if it did not decrease, through time. Furthermore, the basal Geotrypus spp. clearly set apart from the other highly fossorial moles, exhibiting a significant acceleration of evolutionary shifts toward higher degree of fossorial adaptation. Our observations support the hypothesis that the evolution of allometry may reflect a biological demand (in this case functional) that constrains the rates of evolution of anatomical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbazzi L, Angelone C, Arca M, Barisone G, Bedetti C, Delfino M, Kotsakis T, Marcolini F, Palombo MR, Pavia M, Piras P, Rook L, Torre D, Tuveri C, Valli A, Wilkens B (2004) Plio-Pleistocene fossil vertebrates of Monte Tuttavista (Orosei, E. Sardinia, Italy), an overview. Riv Ital Paleontol Strat 110:603–628

    Google Scholar 

  • Adams DC, Collyer ML (2015) Permutation tests for phylogenetic comparative analyses of high-dimensional shape data: what you shuffle matters. Evolution 63:823–829

    Article  Google Scholar 

  • Adams DC, Otarola-Castillo E (2013) Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399

    Article  Google Scholar 

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the revolution. Hystrix Ital J Mammal 71:5–16

    Google Scholar 

  • Bannikova AA, Zemlemerova ED, Colangelo P, Sözen M, Sevindik M, Kidov AA, Dzuev RI, Kryštufek B, Lebedev VS (2015a) An underground burst of diversity – a new look at the phylogeny and taxonomy of the genus Talpa Linnaeus, 1758 (Mammalia: Talpidae) as revealed by nuclear and mitochondrial genes. Zool J Linn Soc doi:10.1111/zoj.12298

    Google Scholar 

  • Bannikova AA, Zemlemerova ED, Lebedev VS, Aleksandrov DY, Fang Y, Sheftel B I (2015b) Phylogenetic position of the Gansu mole Scapanulus oweni Thomas, 1912 and the relationships between strictly fossorial tribes of the family Talpidae. Doklady Biol Sci 464:230–234

    Article  CAS  Google Scholar 

  • Beaulieu JM, Jhwueng DC, Boettiger C, O’Meara BC (2012) Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66:2369–2383

    Article  PubMed  Google Scholar 

  • Bickelmann C, Mitgutsch C, Richardson MK, Jiménez R, de Bakker MA, Sánchez-Villagra MR (2012) Transcriptional heterochrony in talpid mole autopods. EvoDevo 3:1–5

    Article  Google Scholar 

  • Bookstein FL (1986) Size and shape spaces for landmark data in two dimensions. Stat Sci 1:181–222

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric Tools for Landmark Data. Cambridge University Press, Cambridge, 435 pp

  • Boulesteix AL (2005) A note on between-group PCA. Internatl J Pure Appl Math 19:359–366

    Google Scholar 

  • Cabria MT, Rubines J, Gomez-Molina B, Zardoya R (2006) On the phylogenetic position of a rare Iberian endemic mammal, the Pyrenean desman (Galemys pyrenaicus). Gene 375:1–13

    Article  CAS  PubMed  Google Scholar 

  • Campbell B (1939) The shoulder anatomy of the moles. A study in phylogeny and adaptation. Am Anat 64:1–39

    Article  Google Scholar 

  • Colangelo P, Bannikova AA, Kryštufek B, Lebedev VS, Annesi F, Capanna E, Loy A (2010) Molecular systematics and evolutionary biogeography of the genus Talpa (Soricomorpha: Talpidae). Mol Phylogenet Evol 35:372–380

  • Crumpton N, Thompson RS (2013) The holes of moles: osteological correlates of the trigeminal nerve in Talpidae. J Mammal Evol 20:213–225

  • Dahlmann T (2001) Die Kleinsäuger der unter-pliozänen Fundstelle Woelfersheim in der Wetterau (Mammalia: Lipotyphla, Chiroptera, Rodentia). Cour Forschung Inst Senckenberg 128:1–129

    Google Scholar 

  • Dobson GE (1883) A Monograph of the Insectivora, part II. pp. 86–172. John Van Voorst, London

  • Eastman JM, Alfaro ME, Joyce P, Hipp AL, Harmon LJ (2011) A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution 65:3578–3589

    Article  PubMed  Google Scholar 

  • Edwards LF (1937) Morphology of the forelimb of the mole (Scalops aquaticus, L.) in relation to its fossorial habits. Ohio J Sci 37:20–41

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791

    Article  PubMed  Google Scholar 

  • Freckleton RP, Harvey PH (2006) Detecting non-Brownian trait evolution in adaptive radiations. PLoS Biol 4, e373. doi:10.1371/journal.pbio.0040373

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman RA (1886) The anatomy of the shoulder and upper arm of the mole (Talpa europaea). J Anat Physiol 20:201–219

    Google Scholar 

  • Gambaryan P, Gasc JP, Renous S (2003) Cinefluorographical study of the burrowing movements in the common mole, Talpa europaea (Lipotyphla, Talpidae). Russ J Theriol 1:91–109

    Article  Google Scholar 

  • Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364

    Article  Google Scholar 

  • Garland T Jr, Dickerman A, Janis C, Jones JJ (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Article  Google Scholar 

  • Goodall C (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc 53:285–339

    Google Scholar 

  • Gorman ML, Stone RD (1990) The Natural History of the Mole. Christopher Helm Ltd, London

  • Gunnell GF, Bown TM, Hutchinson JH, Bloch JI (2008) Lipotyphla. In: Janis CM, Gunnell GF, Uhen MD (eds) Evolution of Tertiary Mammals of North America, Vol 2: Small Mammals, Xenarthrans, and Marine Mammals. Cambridge University Press, Cambridge, pp 89–125

  • Harmon LJ, Schulte JA, Larson A, Losos JB (2003) Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961–964

  • Harmon LJ, Losos JB, Davies JT, Gillespie RG, Gittleman JL, Jennings BW, Kozak KH, McPeek MA, Moreno-Roark F, Near TJ, Purvis A, Ricklefs RE, Schluter D, Schulte JA II, Seehausen O, Sidlauskas BL, Torres-Carvajal O, Weir JT, Mooers AØ (2010) Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:2385–2396

    PubMed  Google Scholar 

  • Harmon LJ, Weir J, Brock C, Glor R, Challenger W, Hunt G, Fitzjohn R, Pennell M, Slater G, Brown J, Uyeda J, Eastman J (2014) Package “Geiger.” Bioinformatics 24:129–131

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The Comparative Method in Evolutionary Biology (Vol. 239). Oxford University Press, Oxford

  • He K, Shinohara A, Jiang XL, Campbell KL (2014) Multilocus phylogeny of talpine moles (Talpini, Talpidae, Eulipotyphla) and its implications for systematics. Mol Phylogenet Evol 70:513–521

    Article  PubMed  Google Scholar 

  • Hooker J (2016) Skeletal adaptations and phylogeny of the oldest mole Eotalpa (Talpidae, Lipotyphla, Mammalia) from the UK Eocene: the beginning of fossoriality in moles. Palaeontology 59:195–216

    Article  Google Scholar 

  • Hopkins MJ, Smith AB (2015) Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proc Natl Acad Sci USA 112:3758–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison JH (1968) Fossil Talpidae (Insectivora, Mammalia) from the later Tertiary of Oregon. Bull Nat Hist Mus Oregon 11:1–120

  • Hutchison JH (1974) Notes on type specimens of European Miocene Talpidae and a tentative classification of Old World Tertiary Talpidae (Insectivora: Mammalia). Geobios 7:211–256

  • Hutchison JH (1987) Late Pliocene (Blancan) Scapanus (Scapanus)(Talpidae: Mammalia) from the Glenns Ferry Formation of Idaho. Univ Calif Mus Paleontol, Paleo Bios 12:1–7

  • Hutterer R (2005) Order Soricomorpha. In: Wilson DE, Reeder DM (eds) Mammals Species of the World. A Taxonomic and Geographic Reference, 3rd edition. The Johns Hopkins University Press, Baltimore

  • Ingram T, Mahler ML (2013) SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike information criterion. Methods Ecol Evol 4:416–425

    Article  Google Scholar 

  • Klietmann J, Nagel D, Rummel M, van den Hoek Ostende LW (2014) A gap in digging: the Talpidae of Petersbuch 28 (Germany, early Miocene). Paläontol Z 89:563–592

  • Klingenberg CP (2005) Developmental constraints, modules and evolvability. In: Hallgrìmsson B, Hall BK (eds) Variation: A Central Concept in Biology. Elsevier, Amsterdam, pp 219–247

  • Klingenberg CP, Zimmermann M (1992) Static, ontogenetic, and evolutionary allometry: a multivariate comparison in nine species of water striders. Am Nat 140:601–620

    Article  Google Scholar 

  • Marroig G, Cheverud JM (2005) Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution 59:1128–1142

  • McPeek MA (1995) Testing hypotheses about evolutionary change on single branches of a phylogeny using evolutionary contrasts. Am Nat 45:686–703

    Article  Google Scholar 

  • Mein P, Ginsburg L (1997) Les mammifčres du gisement miocčne inférieur de Li Mae Long, Thaïlande: systématique, biostratigraphie paléoenvironnement. Geodiversitas 19:783–844

    Google Scholar 

  • Meloro C, Cáceres NC, Carotenuto F, Sponchiado J, Melo GL, Passaro F, Raia P (2015) Chewing on the trees: constraints and adaptation in the evolution of the primate mandible. Evolution 69:1690–1700

  • Meloro C, Raia P (2010) Cats and dogs down the tree: the tempo and mode of evolution in the lower carnassial of fossil and living Carnivora. Evol Biol 37:177–186

    Article  Google Scholar 

  • Mitteroecker P, Bookstein F (2011) Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol Biol 38:100–114

    Article  Google Scholar 

  • Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Syst 20:269–308

    Article  Google Scholar 

  • O’Meara BC, Ané C, Sanderson MJ, Wainwright PC (2006) Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922–933

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2013) vegan: Community Ecology Package. R-package version 2.0–7. 2013. Available at http://CRAN.R-project.org/package=vegan

  • Pearman PB, Lavergne S, Roquet C, Wüest R, Zimmermann N, Thuiller W (2014) Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage. Global Ecol Biogeogr 23:414–424

    Article  Google Scholar 

  • Pélabon C, Firmat C, Bolstad GH, Voje KL, Houle DL, Cassara J, Le Rouzic A, Hansen TF (2014) Evolution of morphological allometry. Ann N Y Acad Sci 1320:58–75

    Article  PubMed  Google Scholar 

  • Perez SI, Bernal V, Gonzalez PN (2006) Differences between sliding semilandmark methods in geometric morphometrics, with an application to human cranio-facial and dental variation. J Anat 208:769–784

    Article  PubMed  Google Scholar 

  • Piras P, Maiorino L, Teresi L, Meloro C, Lucci F, Kotsakis T, Raia P. (2013) Bite of the cats: relationships between functional integration and mechanical performance as revealed by mandible geometry. Syst Biol 62:878–900

  • Piras P, Maiorino L, Raia P, Marcolini F, Salvi D, Vignoli L, Kotsakis T (2010) Functional and phylogenetic constraints in Rhinocerotinae craniodental morphology. Evol Ecol Res 12:897–928

    Google Scholar 

  • Piras P, Salvi D, Ferrara G, Maiorino L, Delfino M, Pedde L, Kotsakis T (2011) The role of post-natal ontogeny in the evolution of phenotypic diversity in Podarcis lizards. J Evol Biol 24:2705–2720

    Article  CAS  PubMed  Google Scholar 

  • Piras P, Sansalone G, Colangelo P, Teresi L, Kotsakis T, Loy A (2012) Testing convergent and parallel adaptations in talpids humeral mechanical performance by means of geometric morphometrics and finite element analysis. J Morphol 273:696–711

    Article  CAS  PubMed  Google Scholar 

  • Piras P, Sansalone G, Teresi L, Moscato M, Profico A, Eng R, Cox TC, Loy A, Colangelo P, Kotsakis T (2015) Digging adaptation in insectivorous subterranean eutherians. The enigma of Mesoscalops montanensis unveiled by geometric morphometrics and finite element analysis. J Morphol 276:1157–1171

    PubMed  Google Scholar 

  • Raia P, Carotenuto F, Meloro C, Piras P, Pushkina D (2010) The shape of contention: adaptation, history, and contingency in ungulate mandibles. Evolution 64:1489–1503

    PubMed  Google Scholar 

  • Reed CA (1951) Locomotion and appendicular anatomy in three soricoid insectivores. Am Midl Nat 45:513–671

    Article  Google Scholar 

  • Renaud S, Auffray JC, Michaux J (2006) Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution 60:1701–1717

  • Renaud S, Michaux J, Schmidt DN, Aguilar JP, Mein P, Auffray JC (2005) Morphological evolution, ecological diversification and climate change in rodents. Proc R Soc B: Biol Sci 272:609–617

    Article  Google Scholar 

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Rohlf FJ (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143–2160

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (2006) TpsDig 2.05. Department of Ecology and Evolution, State University of NY, Stony Brook, NY. Available at http://life.bio.sunysb.edu/morph/

  • Rohlf FJ (2014) TpsSmall ver. 1.29. New York. Available at: fromlife.bio.sunysb.edu/morph/soft-dataacq.html

  • Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Sánchez-Villagra MR, Horovitz I, Motokawa M (2006) A comprehensive morphological analysis of talpid moles (Mammalia) phylogenetic relationship. Cladistics 22:59–88

  • Sánchez-Villagra MR, Menke PR, Geisler JH (2004) Patterns of evolutionary transformation in the humerus of moles (Talpidae, Mammalia): a character analysis. Mammal Stud 29:163–170

  • Sansalone G, Kotsakis T, Piras P (2015) Talpa fossilis or Talpa europaea? Using geometric morphometrics and allometric trajectories of humeral moles remains from Hungary to answer a taxonomic debate. Palaeontol Electr. palaeo-electronica.org/content/2015/1293-plio-pleistocene-moles

  • Sansalone G, Kotsakis T, Piras P (2016) New systematic insights about plio- Pleistocene moles from Poland. Acta Palaeontol Pol 61:221–229

    Google Scholar 

  • Schlager S (2014) Morpho: calculations and visualisations related to Geometric Morphometrics. R-package version 2.0.3–1. Available at http://cran.rproject.org/web/packages/Morpho/index.html.

  • Schmidt-Kittler N (2002) Feeding specializations in rodents. Senckenberg Lethaia 82:141–152

    Article  Google Scholar 

  • Schmidt-Kittler N (2006) Microdonty and macrodonty in herbivorous mammals. Palaeontographica Abteilung A 278:163–179

    Article  Google Scholar 

  • Schwermann AH, Martin TA (2012) Partial skeleton of Geotrypus antiquus (Talpidae, Mammalia) from the late Oligocene of the Enspel Fossillagerstätte in Germany. Paläontol Z 86:409–439

  • Schwermann AH, Thompson RS (2015) Extraordinarily preserved talpids (Mammalia, Lipotyphla) and the evolution of fossoriality. J Vertebr Paleontol, doi:10.1080/02724634.2014.934828

    Google Scholar 

  • Scott RG, Richardson RC (2005) Realities of biologically inspired design with a subterranean digging robot example. Robotics Applications 498:1–6

    Google Scholar 

  • Shinohara A, Campbell KL, Suzuki H (2003) Molecular phylogenetic relationships of moles, shrew moles, and desmans from the new and old worlds. Mol Phylogenet Evol 27:247–258

    Article  CAS  PubMed  Google Scholar 

  • Shinohara A, Kawada SI, Son NT, Koshimoto C, Endo H, Can DN, Suzuki H (2014) Molecular phylogeny of east and southeast Asian fossorial moles (Lipotyphla, Talpidae). J Mammal 95:455–466

    Article  Google Scholar 

  • Skoczen S (1993) New records of Parascalops, Neurotrichus and Condylura (Talpinae, Insectivora) from the Pliocene of Poland. Acta Theriol 38:125–125

    Article  Google Scholar 

  • Slater GJ (2015) Not-so-early bursts and the dynamic nature of morphological diversification. Proc Natl Acad Sci USA 112:3595–3596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater GJ, Pennell MV (2014) Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution. Syst Biol doi:10.1093/sysbio/syt066

    PubMed  Google Scholar 

  • Slater GJ, Price SA, Santini F, Alfaro ME (2010) Diversity versus disparity and the radiation of modern cetaceans. Proc R Soc: B Biol Sci 277:3097–3104

    Article  Google Scholar 

  • Storch G, Qiu Z-D (1983) The Neogene mammalian faunas of Ertemte and Harr obo in Inner Mongolia (Nei Mongol), China. -2. Moles – Insectivora: Talpidae. Senckenberg Lethaia 64:89–127

  • Storch G, Qiu Z-D (1991) Insectivores (Mammalia: Erinaceidae, Soricidae, Talpidae) from the Lufeng hominoid locality, late Miocene of China. Geobios 24:601–621

  • Thomas GH, Freckleton RP (2012) MOTMOT: models of trait macroevolution on trees. Methods Ecol Evol 3:145–151

    Article  CAS  Google Scholar 

  • van den Hoek Ostende LW (1997) Insectivore faunas from the lower Miocene of Anatolia. Part 4: the genus Desmanodon (Talpidae) with the description of a new species from the lower Miocene of Spain. Proc K Ned Akad Wet 100:27–65

  • van den Hoek Ostende LW (2001) Insectivore faunas from the lower Miocene of Anatolia. Part 5, Talpidae. Script Geol 122:1–45

    Google Scholar 

  • van den Hoek Ostende LW, Fejfar O (2006) Erinaceidae and Talpidae (Erinaceomorpha, Soricomorpha, Mammalia) from the lower Miocene of Merkur-Nord (Czech Republic, MN 3). Beitr Paläontol 30:175–203

  • Vaughan TA, Ryan JM, Czaplewski NJ (2015) Mammalogy. 6th ed. Jones and Bartlett Publishers, Burlington, 756 pp

    Google Scholar 

  • Viscosi V, Antonecchia G, Lepais O, Fortini P, Gerber S, Loy A (2012) Leaf shape and size differentiation in white oaks: assessment of allometric relationships among three sympatric species and their hybrids. Internatl Plant Sci 173:875–884

  • Viscosi V, Cardini A (2011) Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PLoS One 6:e25630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorhies MR (1977) Fossil moles of late Hemphillian age from northeastern Nebraska. Trans Nebraska Acad Sci 4:129–137

    Google Scholar 

  • Yalden DW (1966) The anatomy of mole locomotion. J Zool 149:55–64

    Article  Google Scholar 

  • Yates TL, Moore DW (1990) Speciation and evolution in the family Talpidae (Mammalia: Insectivora). Prog Clin Biol Res 335:1

    CAS  PubMed  Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric Morphometrics for Biologists: A Primer. 2nd ed. Elsevier, Academic Press, San Diego

  • Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric Morphometrics for Biologists: A Primer. Elsevier, Academic Press. San Diego

    Google Scholar 

  • Ziegler R (1990) Talpidae (Insectivora, Mammalia) aus dem Oberoligozän und Untermiozän Süddeutschlands. Stutt Beitr Natur B 167:1–81

    Google Scholar 

  • Ziegler R (1999) Order Insectivora. In: Rössner GE and Heissig K (eds) The Miocene Land Mammals of Europe. Verlag Dr. Friedrich Pfeil, München, pp 53–74

  • Ziegler R (2003) Moles (Talpidae) from the late middle Miocene of South Germany. Acta Palaeontol Pol 48:617–648

  • Ziegler R (2006) Insectivores (Lipotyphla) and bats (Chiroptera) from the late Miocene of Austria. Ann Naturhist Mus Wien 107:93–196

    Google Scholar 

  • Ziegler R (2012) Moles (Talpidae, Mammalia) from early Oligocene karstic fissure fillings in South Germany. Geobios 45:501–513

Download references

Acknowledgements

We are particularly grateful to Dr. Lars van den Hoek Ostende of the Naturalis Biodiversitat Centre, Leiden, Netherlands, Dr. Reinhard Ziegler of the Staatliches Museum fur Naturkunde, Stuttgart, Germany, Prof. Barbara Rzebik-Kowalska of ISEZ-PAN, Krakow, Poland, and Dr. Shin-Ichiro Kawada of the Tsukuba Natural History Museum, Tsukuba, Ibaraki, Japan, for their helpful suggestions during the manuscript preparation. We wish to thank Dr. Christiane Bastos-Silvera of the Museu de Historia Natural, Lisboa, Portugal; Prof. Zhuding Qiu of IVPP, Beijing, China; Dr. Paula Jenkins, Dr. Roberto Portella and Dr. Emma Bernard of NHM, London, UK; Dr. Emmanuel Robert of Lyon Universitè, Lyon, France; Dr. Michael Rummel of Augsburg Naturmuseum, Augsburg, Germany; Dr. Gertrud Roessner of BSPG, Munich, Germany; Dr. Ursula Goelich of the Wien Natural History Museum, Wien, Austria; Dr. Jim Dines of LACM, Los Angeles, USA; Dr. Patricia Holroyd of UCMP, Berkeley, USA; Dr. Mihaly Gasparik of the Budapest Natural History Museum, Budapest, Hungary; Prof. Laszlo Kordos of the Budapest Geological Survey, Budapest, Hungary; Prof. Yukimitzu Tomida of Tokyo NHM, Tsukuba, Japan; and Dr. Paolo Agnelli of “La Specola” Museo di Storia Naturale di Firenze, Italy. They each allowed us to visit their collections and made our visits comfortable and pleasant.

We are grateful to two anonymous referee for their useful comments during the manuscript preparation.

G. Sansalone received support from the SYNTHESYS Project (http://www.synthesys.info), which is financed by the European Community Research Infrastructure Action under the FP7 “Capacities” Program (GB-TAF-2095 and AT-TAF-3415).

The research of A.A. Bannikova and E.D. Zemlemerova was financially supported by the Russian Science Foundation, project 14-50-00029, and the Russian Foundation for Basic Research, project 15-29-02771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sansalone.

Electronic supplementary material

Supplementary Table I.

List of specimens used in this study. (PDF 8 kb)

Supplementary Table II.

Number of individuals per species. (PDF 6 kb)

Supplementary Table III.

References used for species stratigraphy and phylogenetic position. (PDF 17 kb)

Supplementary Figure I.

Three-dimensional dynamic plot of the first three PC scores of the shape coordinates. Talpini (red hull); green spheres represent Geotrypus spp.; Scalopini (black hull). (XLSX 44 kb)

Supplementary Figure II.

Three-dimensional dynamic plot of the allometric trajectories of Talpini (red dots) and Scalopini (black dots). (XLSX 39 kb)

Supplementary Figure III.

Three-dimensional dynamic plot of phylomorphospace, representing ages/shapes/sizes. Ages (x-axis) are represented by the relative ages of the tips; shapes (y-axis) are represented by the first PC scores; sizes (z-axis) are represented by the centroid size (CS) values. Talpini (red dots), Scalopini (black dots). (XLSX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sansalone, G., Colangelo, P., Kotsakis, T. et al. Influence of Evolutionary Allometry on Rates of Morphological Evolution and Disparity in strictly Subterranean Moles (Talpinae, Talpidae, Lipotyphla, Mammalia). J Mammal Evol 25, 1–14 (2018). https://doi.org/10.1007/s10914-016-9370-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-016-9370-9

Keywords

Navigation