Skip to main content

Advertisement

Log in

Cats and Dogs Down the Tree: The Tempo and Mode of Evolution in the Lower Carnassial of Fossil and Living Carnivora

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Teeth are usually considered the primer to understand mammalian evolution. Their morphology is the result of the complex interplay between adaptation to food processing and somewhat fixed developmental programs. We analyse the morphometry of the first lower molar (m1 = lower carnassial) in 199 carnivore species (64 extant and 135 extinct) in order to clarify the tempo and mode of evolution of two different and possibly related traits, tooth size and tooth angular height. We applied a set of comparative methods and produced disparity through time plots by using four alternative phylogenetic trees. Three of them include fossil species, and were used in order to estimate what an effect the inclusion of fossil species has on the patterns we found for extant species. Our analyses on living species show that m1 size exhibits a weak phylogenetic signal, and that its variance occurs more within than among clades. The opposite applies to m1 angular height, which evolved in an adaptive radiation-like fashion, showing very strong phylogenetic signal and great among-clade variation. These results are thoroughly confirmed after the inclusion of fossil data. Major differences in m1 shape in Carnivora were clearly established early in their evolutionary history, probably as a result of rapid morphospace occupation after the clade radiation. Successive variation in tooth size allowed species to avoid potential overlap in feeding morphologies as a mechanism to limit interspecific competitive interaction within subclades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, D. C. (2008). Phylogenetic meta-analysis. Evolution, 62(3), 567–572.

    Article  PubMed  Google Scholar 

  • Arnason, U., Gullberg, A., Janke, A., & Kullberg, M. (2007). Mitogenomic analyses of caniform relationships. Molecular Phylogenetics and Evolution, 45, 863–874.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, W. (2001). Developmental drive: An important determinant of the direction of phenotypic evolution. Evolution & Development, 3(4), 271–278.

    Article  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., & Purvis, A. (1999). Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews, 74(2), 143–175.

    Article  PubMed  CAS  Google Scholar 

  • Blomberg, S. P., & Garland, T. (2002). Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology, 15(6), 899–909.

    Article  Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57(4), 717–745.

    PubMed  Google Scholar 

  • Brakefield, P. M. (2006). Evo-devo and constraints on selection. Trends in Ecology & Evolution, 21(7), 362–368.

    Article  Google Scholar 

  • Butler, M. A., & King, A. A. (2004). Phylogenetic comparative analysis: A modeling approach for approach for adaptive evolution. The American Naturalist, 164(6), 683–695.

    Article  Google Scholar 

  • Carbone, C., Mace, G. M., Roberts, S. C., & Macdonald, D. W. (1999). Energetic constraints on the diet of terrestrial carnivores. Nature, 402, 286–288.

    Article  PubMed  CAS  Google Scholar 

  • Carbone, C., Teacher, A., & Rowcliffe, J. M. (2007). The costs of carnivory. PLoS Biology, 5(2), E22.

    Article  PubMed  CAS  Google Scholar 

  • Ciampaglio, C. N., Kemp, M., & McShea, D. W. (2001). Detecting changes in morphospace occupation patterns in the fossil record: Characterization and analysis of measures of disparity. Paleobiology, 27(4), 695–715.

    Article  Google Scholar 

  • Crusafont-Pairó, M., & Truyols-Santonja, J. (1956). A biometric study of evolution of fissiped carnivores. Evolution, 10, 314–332.

    Article  Google Scholar 

  • Crusafont-Pairó, M., Truyols-Santonja, J. (1957). Estudios masterométricos en la evolución Fisípedos. I. Los módulos angulares a y b. II. Los parámetros lineales P, C, y T. Boletino Instituto Geologico y Minero España, 68, 1–140.

  • Crusafont-Pairó, M., & Truyols-Santonja, J. (1958). A quantitative study of stasigenesis in fissipede carnivores. Nature, 181, 289–290.

    Article  Google Scholar 

  • Davies, T. J., Meiri, S., Barraclough, T. G., & Gittleman, J. L. (2007). Species co-existence and character divergence across carnivores. Ecology Letters, 10(2), 146–152.

    Article  PubMed  Google Scholar 

  • Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.

    Article  PubMed  CAS  Google Scholar 

  • Ewer, R. F. (1973). The carnivores. New York: Cornell University Press.

    Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125(1), 1–15.

    Article  Google Scholar 

  • Finarelli, J. A., & Flynn, J. J. (2006). Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): The effects of incorporating data from the fossil record. Systematic Biology, 55(2), 301–313.

    Article  PubMed  Google Scholar 

  • Flynn, J. J. (1996). Carnivore phylogeny and rates of evolution: morphological, taxic, and molecular. In J. L. Gittleman (Ed.), Carnivore behavior, ecology, and evolution (Vol. 2, pp. 542–581). Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. The American Naturalist, 160(6), 712–726.

    Article  PubMed  CAS  Google Scholar 

  • Garland, T., Bennett, A. F., & Rezende, E. L. (2005). Phylogenetic approaches in comparative physiology. Journal of Experimental Biology, 208, 3015–3035.

    Article  PubMed  Google Scholar 

  • Gaubert, P., & Cordeiro-Estrela, P. (2006). Phylogenetic systematics and tempo of evolution of the Viverrinae (Mammalia, Carnivora, Viverridae) within feliformians: Implications for faunal exchanges between Asia and Africa. Molecular Phylogenetics and Evolution, 41, 266–278.

    Article  PubMed  CAS  Google Scholar 

  • Gittleman, J. L. (1985). Carnivore body size: Ecological and taxonomic correlates. Oecologia, 67(4), 540–554.

    Article  Google Scholar 

  • Gittleman, J. L. (1986). Carnivore life history patterns: Allometric, phylogenetic, and ecological associations. The American Naturalist, 127(6), 744–771.

    Article  Google Scholar 

  • Gould, S. J. (1989). Wonderful life: The Burgess Shale and the nature of history. New York: W. W. Norton & Company.

    Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Harvard, MA: Harvard University Press.

    Google Scholar 

  • Hansen, T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution, 51(5), 1341–1351.

    Article  Google Scholar 

  • Harmon, L. J., Schulte, J. A., Losos, J. B., & Larson, A. (2003). Tempo and mode of evolutionary radiation in iguanian lizards. Science, 301(5635), 961–964.

    Article  PubMed  CAS  Google Scholar 

  • Harmon, L. J., Weir, J., Brock, C., Glor, R. E., & Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. Bioinformatics, 24(1), 129–131.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, R. M., Jr. (1996). Biogeography of the order Carnivora. In J. L. Gittleman (Ed.), Carnivore behavior, ecology, and evolution (Vol. 2, pp. 485–541). Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Jernvall, J., Hunter, J. P., & Fortelius, M. (1996). Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science, 274(5292), 1489–1492.

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh, K. D., Evans, A. R., & Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–432.

    Article  PubMed  CAS  Google Scholar 

  • Lavin, S. R., Karasov, W. H., Ives, A. R., Middleton, K. M., & Garland, T. (2008). Morphometrics of the avian small intestine compared with that of nonflying mammals: A phylogenetic approach. Physiological and Biochemical Zoology, 81(5), 526–550.

    Article  PubMed  Google Scholar 

  • Lucas, P. W. (2004). Dental functional morphology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Maddison, W. P., Maddison, D. R. (2002–2009). Mesquite: A modular system for evolutionary analysis, version 2.72.

  • Martins, E. P., & Hansen, T. F. (1997). Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist, 149(4), 646–667.

    Article  Google Scholar 

  • Mattila, T. M., Bokma F. (2010). Extant mammal body masses suggest punctuated equilibrium. Proceedings of the Royal Society of London, B series, 275(1648), 2195–2199.

  • McNab, B. K. (1986). The influence of food habits on the energetics of eutherian mammals. Ecological Monographs, 56(1), 1–19.

    Article  Google Scholar 

  • McNab, B. K. (2000). Energy constraints on carnivore diet. Nature, 907, 584.

    Article  CAS  Google Scholar 

  • Meiri, S., Dayan, T., & Simberloff, D. (2005). Variability and correlations in carnivore crania and dentition. Functional Ecology, 19, 337–343.

    Article  Google Scholar 

  • Meiri, S., Dayan, T., & Simberloff, D. (2007). Guild composition and mustelid morphology—character displacement but no character release. Journal of Biogeography, 34, 2148–2158.

    Article  Google Scholar 

  • Meloro, C., Raia, P., Piras, P., Barbera, C., & O’Higgins, P. (2008). The shape of the mandibular corpus in large fissiped carnivores: Allometry, function and phylogeny. Zoological Journal of the Linnean Society, 154(4), 832–845.

    Article  Google Scholar 

  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.

    Article  PubMed  CAS  Google Scholar 

  • Pagel, M., Venditti, C., & Meade, A. (2006). Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science, 314, 119–121.

    Article  PubMed  CAS  Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289–290.

    Article  PubMed  CAS  Google Scholar 

  • Polly, P. D. (1998). Variability, selection, and constraints: development and evolution in viverravid (Carnivora, Mammalia) molar morphology. Paleobiology, 24, 409–429.

    Google Scholar 

  • Polly, P. D. (2001). Paleontology and the comparative method: Ancestral node reconstructions versus observed node values. The American Naturalist, 157, 596–609.

    Article  PubMed  CAS  Google Scholar 

  • Polly, P. D. (2002). Phylogenetic tests for differences in shape and the importance of divergence times: Eldredge’s enigma explored. In N. MacLeod & P. Forey (Eds.), Morphology, shape, and phylogenetics (pp. 220–246). London: Taylor and Francis, Inc.

    Chapter  Google Scholar 

  • Polly, P. D. (2004). On the simulation of the evolution of morphological shape: Multivariate shape under selection and drift. Palaeontologia Electronica, 7(2), 7A:1–28.

    Google Scholar 

  • Polly, P. D. (2007). Development with a bite. News and views. Nature, 449, 413–415.

    Article  PubMed  CAS  Google Scholar 

  • Polly, P. D., Wesley-Hunt, G. D., Heinrich, R. E., Davis, G., & Houde, P. (2006). Earliest known carnivoran auditory bulla and support for a recent origin of crown-group Carnivora (Eutheria, Mammalia). Palaeontology, 49, 1019–1027.

    Article  Google Scholar 

  • Popowics, T. E. (2003). Postcanine dental form in the Mustelidae and Viverridae (Carnivora: Mammalia). Journal of Morphology, 256(3), 322–341.

    Article  PubMed  Google Scholar 

  • R Development Core Team (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. www.R-project.org.

  • Rabosky, D. L. (2009). Heritability of extinction rates links diversification patterns in molecular phylogenies and fossils. Systematic Biology, 58(6), 629–640.

    Article  PubMed  CAS  Google Scholar 

  • Raia, P., Carotenuto, F., Meloro, C., Piras, P., & Pushkina, D. (2010). The shape of contention: Adaptation, history, and contigency in ungulate mandibles. Evolution, 64(5), 1489–1503.

    PubMed  Google Scholar 

  • Renvoisé, E., Evans, A. R., Jebrane, A., Labruère, C., Laffont, R., & Montuire, S. (2009). Evolution of mammal tooth patterns: New insights from a developmental prediction model. Evolution, 63(5), 1327–1340.

    Article  PubMed  Google Scholar 

  • Revell, L. J., Harmon, L. J., & Collar, D. C. (2008). Phylogenetic signal, evolutionary process, and rate. Systematic Biology, 57(4), 591–601.

    Article  PubMed  Google Scholar 

  • Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: Geometric interpretations. Evolution, 55(11), 2143–2160.

    PubMed  CAS  Google Scholar 

  • Rohlf, F. J. (2006a). tpsDig 2.10. Stony Brook, NY: Department of Ecology and Evolution, State University of New York.

  • Rohlf, F. J. (2006b). Ntsys version v. 2.21. New York: Exeter Software.

    Google Scholar 

  • Salazar-Ciudad, I., & Jernvall, J. (2010). A computational model of teeth and the developmental origins of morphological variation. Nature, 464, 583–586.

    Article  PubMed  CAS  Google Scholar 

  • Schwenk, K. (1995). A utilitarian approach to evolutionary constraint. Zoology, 98, 251–262.

    Google Scholar 

  • Van Valen, L. (1960). A functional index of hypsodonty. Evolution, 14, 531–532.

    Article  Google Scholar 

  • Van Valkenburg, B. (1990). Skeletal and dental predictors of body mass in carnivores. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 181–205). Cambridge: Cambridge University Press.

    Google Scholar 

  • Van Valkenburgh, B. (1991). Iterative evolution of hypercarnivory in canids (Mammalia: Carnivore): Evolutionary interactions among sympatric predators. Paleobiology, 17(4), 340–362.

    Google Scholar 

  • Van Valkenburgh, B. (1999). Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Science, 27, 463–493.

    Article  Google Scholar 

  • Van Valkenburgh, B. (2007). Déjà vu: The evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology, 1–17.

  • Van Valkenburgh, B., Wang, X., & Damuth, J. (2004). Cope’s rule, hypercarnivory and extinction in North American canids. Science, 306, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, P. J. (2000). The use of phylogenetic hypotheses in morphospace analyses. In R. E. Chapman, M. Wills, & D. Rasskin-Gutman (Eds.), Morphospace concepts and applications. New York: Columbia University Press.

    Google Scholar 

  • Webster, A. J., & Purvis, A. (2002). Testing the accuracy of methods for reconstructing ancestral states of continuous characters. Proceedings of the Royal Society B, 269(1487), 143–149.

    Article  PubMed  Google Scholar 

  • Werdelin, L. (1989). Constraint and adaptation in the bone cracking canid Osteoborus (Mammalia: Canidae). Paleobiology, 15(4), 387–401.

    Google Scholar 

  • Werdelin, L. (1996). Carnivoran ecomorphology: A phylogenetic perspective. In J. L. Gittleman (Ed.), Carnivore behavior, ecology, and evolution (Vol. 1, pp. 582–624). Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Werdelin, L., & Solounias, N. (1991). The Hyaenidae: Taxonomic systematics and evolution. Fossils and Strata, 30, 1–104.

    Google Scholar 

  • Wesley-Hunt, G. D. (2005). The morphological diversification of carnivores in North America. Paleobiology, 31(1), 35–55.

    Article  Google Scholar 

  • Wesley-Hunt, G. D., & Flynn, J. J. (2005). Phylogeny of the Carnivora: Basal relationships among the carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to Carnivora. Journal of Systematic Palaeontology, 3, 1–28.

    Article  Google Scholar 

  • Wesley-Hunt, G. D., & Werdelin, L. (2005). Basicranial morphology and phylogenetic position of the upper Eocene carnivoramorphan Quercygale. Acta Palaeontologica Polonica, 50(4), 837–846.

    Google Scholar 

Download references

Acknowledgments

We are grateful to curators and staff of several museum institutions for kindly providing access to museum collections in their care: P. Jenkins, L. Tomsett, R. Portela-Miguez, D. Hills, J. J. Hooker, P. Brewer, A. Currant (British Museum of Natural History); B. Engesser, R. Kraft (Naturhistorischen Museum, Basel); E. Cioppi, L. Rook (Museo di Geologia e Paleontologia, Università di Firenze); P. Agnelli (Museo Zoologico ‘La Specola’, Firenze); G. Doria (Museo Civico di Storia Naturale ‘G. Doria’); M. Fornasiero (Museo di Paleontologia Università di Padova, Padova, Italy); R. Carlini (Museo Civico di Zoologia, Roma); M. Reilly, J. Liston (Huntherian Museum and Art Gallery, University of Glasgow); B. Sanchez, J. Morales, J. Cabarga, J. B. Rodríguez (Museo Nacional de Ciencias Naturales, Madrid); A. Arribas (Museo Geominero, Madrid); A. Kitchener (Royal Museum of Scotland, Edinburgh); D. Goujet, P. Tassy and C. Signe (Muséum National d’Histoire Naturelle, Paris); E. Gilissen and W. Wendelen (Royal Museum for Cerntral Africa). G. Slater kindly provided images of Arctodus simus. P. Piras and F. Lucci shared with us their picture database of felid mandibles. A. Colamarco, S. Meiri and F. Carotenuto provided important insights to improve the quality of this ms. We are grateful to Benedikt Hallgrimsson and two anonymous reviewers for their helpful criticisms and comments. This research was supported by the European Community’s Programme ‘Structuring the European Research Area’ under Synthesys at the Museo Nacional de Ciencias Naturales (ES-TAF 858) and Muséum National d’Histoire Naturelle (FR-TAF 1680) for the project ‘The evolution of feeding habits in extinct European carnivores’. The visit to Royal Museum for Central Africa was supported by the project “Eco-morphology of extant African carnivores” (BE-TAF 4901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Meloro.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4045 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meloro, C., Raia, P. Cats and Dogs Down the Tree: The Tempo and Mode of Evolution in the Lower Carnassial of Fossil and Living Carnivora. Evol Biol 37, 177–186 (2010). https://doi.org/10.1007/s11692-010-9094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-010-9094-3

Keywords

Navigation