Skip to main content

Advertisement

Log in

Non-Coding RNAs as Regulators of Mammary Development and Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Over the past decade, non-coding RNAs (ncRNAs) have become a new paradigm of gene regulation. ncRNAs are classified into two major groups based on their size: long non-coding RNAs (lncRNAs) and small non-coding RNAs (including microRNAs, piRNAs, snoRNAs, and endogenous siRNAs). Here we review the recently emerging role of ncRNAs in mammary development, tumorigenesis, and metastasis, with the focus being on microRNAs (miRNAs) and lncRNAs. These findings shed new light on normal development and malignant progression, and suggest the potential for using ncRNAs as new biomarkers of breast cancer and targets for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIR:

Antisense to IGF2R

BC200:

Brain cytoplasmic RNA 200 nt

COX-2:

Cyclooxygenase-2

EMT:

Epithelial-mesenchymal transition

ER:

Estrogen receptor

GAS5:

Growth arrest-specific 5

GEMM:

Genetically engineered mouse model

GHR:

Growth hormone receptor

GR:

Glucocorticoid receptor

GRE:

Glucocorticoid response element

HER2:

Human epidermal growth factor receptor 2

HMGA2:

High-mobility group AT-hook 2

HOTAIR:

Hox antisense intergenic RNA

IRAK1:

Interleukin-1 receptor-associated kinase 1

lncRNA:

Long non-coding RNA

LSD1:

Lysergic acid diethylamide 1

MALAT1:

Metastasis associated lung adenocarcinoma transcript 1

MET:

Mesenchymal-epithelial transition

miRNA:

microRNA

MMP-9:

Matrix metalloproteinase-9

ncRNA:

Non-coding RNA

NFκB:

Nuclear factor κB

NSCLC:

Non-small cell lung cancer

PDCD4:

Programmed cell death 4

piRNA:

Piwi-interacting RNA

PLR-R:

Prolactin receptor

PR:

Progesterone receptor

PRC2:

Polycomb repressive complex 2

PTEN:

Phosphatase and tensin homolog on chromosome 10

siRNA:

Small-interfering RNA

snoRNA:

Small nucleolar RNA

SOCS1:

Suppressor of cytokine signaling 1

TGF-β:

Transforming growth factor β

TPM1:

Tropomyosin 1

TRAF6:

TNF receptor associated factor 6

TRAIL:

Tumor necrosis factor–related apoptosis-inducing ligand

TRPS1:

Trichorhinophalangeal syndrome type 1

VEGF:

Vascular endothelial growth factor

XIST:

X-inactive-specific transcript

ZEB1:

Zinc finger E-box binding homeobox 1

ZEB2:

Zinc finger E-box binding homeobox 2

Zfas1:

Antisense to the 5′ end of the protein-coding gene Znfx1

References

  1. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  2. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.

  3. Stein LD. Human genome: end of the beginning. Nature. 2004;431:915–6.

    Article  CAS  PubMed  Google Scholar 

  4. Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  6. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–62.

    Article  CAS  PubMed  Google Scholar 

  7. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.

    Article  CAS  PubMed  Google Scholar 

  8. Slack FJ, Basson M, Liu Z, et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell. 2000;5:659–69.

    Article  CAS  PubMed  Google Scholar 

  9. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294:862–4.

    Article  CAS  PubMed  Google Scholar 

  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  11. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jovanovic M, Hengartner MO. miRNAs and apoptosis: RNAs to die for. Oncogene. 2006;25:6176–87.

    Article  CAS  PubMed  Google Scholar 

  13. Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65:9628–32.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang B, Pan X, Anderson TA. MicroRNA: a new player in stem cells. J Cell Physiol. 2006;209:266–9.

    Article  CAS  PubMed  Google Scholar 

  15. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O'Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.

    Article  PubMed  CAS  Google Scholar 

  17. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  18. Ma L, Weinberg RA. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet. 2008;24:448–56.

    Article  CAS  PubMed  Google Scholar 

  19. Nicoloso MS, Spizzo R, Shimizu M, et al. MicroRNAs–the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9:293–302.

    Article  CAS  PubMed  Google Scholar 

  20. Huarte M, Rinn JL. Large non-coding RNAs: missing links in cancer? Hum Mol Genet. 2010;19:R152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354–61.

    Article  CAS  PubMed  Google Scholar 

  22. Nagano T, Mitchell JA, Sanz LA, et al. The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322:1717–20.

    Article  CAS  PubMed  Google Scholar 

  23. Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao J, Sun BK, Erwin JA, et al. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008;322:750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rijnkels M, Kabotyanski E, Montazer-Torbati MB, et al. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia. 2010;15:85–100.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev. 1980;60:1049–106.

    CAS  PubMed  Google Scholar 

  27. Stein T, Morris JS, Davies CR, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Canc Res. 2004;6:R75–91.

    Article  CAS  Google Scholar 

  28. Master SR, Stoddard AJ, Bailey LC, et al. Genomic analysis of early murine mammary gland development using novel probe-level algorithms. Genome Biol. 2005;6:R20.

    Article  PubMed  PubMed Central  Google Scholar 

  29. McBryan J, Howlin J, Kenny PA, et al. ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene. 2007;26:6406–19.

    Article  CAS  PubMed  Google Scholar 

  30. Rudolph MC, McManaman JL, Phang T, et al. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genom. 2007;28:323–36.

    Article  CAS  Google Scholar 

  31. Clarkson RW, Wayland MT, Lee J, et al. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Canc Res. 2004;6:R92–R109.

    Article  CAS  Google Scholar 

  32. Kendrick H, Regan JL, Magnay FA, et al. Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genom. 2008;9:591.

    Article  CAS  Google Scholar 

  33. Raouf A, Zhao Y, To K, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008;3:109–18.

    Article  CAS  PubMed  Google Scholar 

  34. Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 2009;23:2563–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Avril-Sassen S, Goldstein LD, Stingl J, et al. Characterisation of microRNA expression in post-natal mouse mammary gland development. BMC Genom. 2009;10:548.

    Article  CAS  Google Scholar 

  36. Ibarra I, Erlich Y, Muthuswamy SK, et al. A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev. 2007;21:3238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greene SB, Gunaratne PH, Hammond SM, et al. A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci. 2010;123:606–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tanaka T, Haneda S, Imakawa K, et al. A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression. Differentiation. 2009;77:181–7.

    Article  CAS  PubMed  Google Scholar 

  39. Anderson E. The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Canc Res. 2002;4:197–201.

    Article  CAS  Google Scholar 

  40. Cui W, Li Q, Feng L, et al. MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland. Mol Cell Biochem. 2011;355:17–25.

    Article  CAS  PubMed  Google Scholar 

  41. Wang CM, Li QZ, Li Y. miR-138 function and its targets on mouse mammary epithelial cells. Progr Biochem Biophys. 2008;35:834–8.

    CAS  Google Scholar 

  42. Lu LM, Li QZ, Wang CM, Li Y, Gao XJ. Impact of miR-221 on mouse mammary epithelial cells and lactation. Chin J Biochem Mol Biol. 2009;25:454–8.

    CAS  Google Scholar 

  43. Ucar A, Vafaizadeh V, Jarry H, et al. miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat Genet. 2010;42:1101–8.

    Article  CAS  PubMed  Google Scholar 

  44. Askarian-Amiri ME, Crawford J, French JD, et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA. 2011;17:878–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article  CAS  PubMed  Google Scholar 

  46. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene. 2007;26:2799–803.

    Article  CAS  PubMed  Google Scholar 

  47. Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283:1026–33.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282:14328–36.

    Article  CAS  PubMed  Google Scholar 

  49. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ovcharenko D, Kelnar K, Johnson C, et al. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res. 2007;67:10782–8.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang S, Zhang HW, Lu MH, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;70:3119–27.

    Article  CAS  PubMed  Google Scholar 

  52. Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A. 2006;103:7024–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467:86–90.

    Article  CAS  PubMed  Google Scholar 

  54. Bussing I, Slack FJ, Grosshans H. let-7 microRNAs in development, stem cells and cancer. Trends Mol Med. 2008;14:400–9.

    Article  PubMed  CAS  Google Scholar 

  55. Boyerinas B, Park SM, Hau A, et al. The role of let-7 in cell differentiation and cancer. Endocr Relat Canc. 2010;17:F19–36.

    Article  CAS  Google Scholar 

  56. Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109–23.

    Article  CAS  PubMed  Google Scholar 

  57. Yu Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182:509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Spizzo R, Nicoloso MS, Lupini L, et al. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ. 2010;17:246–54.

    Article  CAS  PubMed  Google Scholar 

  59. Mackiewicz M, Huppi K, Pitt JJ, et al. Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA. Breast Canc Res Treat. 2011;130:663–79.

    Article  CAS  Google Scholar 

  60. Derfoul A, Juan AH, Difilippantonio MJ, et al. Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis. 2011;32:1607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. 2009;19:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iorio MV, Casalini P, Piovan C, et al. microRNA-205 regulates HER3 in human breast cancer. Cancer Res. 2009;69:2195–200.

    Article  CAS  PubMed  Google Scholar 

  63. Mourtada-Maarabouni M, Pickard MR, Hedge VL, et al. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2009;28:195–208.

    Article  CAS  PubMed  Google Scholar 

  64. Kino T, Hurt DE, Ichijo T, et al. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3:ra8.

    PubMed  PubMed Central  Google Scholar 

  65. Perez DS, Hoage TR, Pritchett JR, et al. Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet. 2008;17:642–55.

    Article  CAS  PubMed  Google Scholar 

  66. Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–41.

    Article  PubMed  CAS  Google Scholar 

  67. Lin R, Maeda S, Liu C, et al. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene. 2007;26:851–8.

    Article  CAS  PubMed  Google Scholar 

  68. Li L, Feng T, Lian Y, et al. Role of human noncoding RNAs in the control of tumorigenesis. Proc Natl Acad Sci U S A. 2009;106:12956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Iacoangeli A, Lin Y, Morley EJ, et al. BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis. 2004;25:2125–33.

    Article  CAS  PubMed  Google Scholar 

  70. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  CAS  PubMed  Google Scholar 

  71. Le XF, Merchant O, Bast RC, et al. The roles of MicroRNAs in the cancer invasion-metastasis cascade. Cancer Microenviron. 2010;3:137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    Article  CAS  PubMed  Google Scholar 

  73. Ma L. Role of miR-10b in breast cancer metastasis. Breast Canc Res. 2010;12:210.

    Article  CAS  Google Scholar 

  74. Preis M, Gardner TB, Gordon SR, et al. MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clin Cancer Res. 2011;17:5812–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sasayama T, Nishihara M, Kondoh T, et al. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer. 2009;125:1407–13.

    Article  CAS  PubMed  Google Scholar 

  76. Sun L, Yan W, Wang Y, et al. MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res. 2011;1389:9–18.

    Article  CAS  PubMed  Google Scholar 

  77. Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12:247–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10:202–10.

    Article  CAS  PubMed  Google Scholar 

  79. Su X, Chakravarti D, Cho MS, et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature. 2010;467:986–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  81. Martello G, Rosato A, Ferrari F, et al. A MicroRNA targeting dicer for metastasis control. Cell. 2010;141:1195–207.

    Article  CAS  PubMed  Google Scholar 

  82. Di Leva G, Gasparini P, Piovan C, et al. MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. J Natl Canc Inst. 2010;102:706–21.

    Article  CAS  Google Scholar 

  83. Cochrane DR, Cittelly DM, Howe EN, et al. MicroRNAs link estrogen receptor alpha status and dicer levels in breast cancer. Horm Cancer. 2010;1:306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stinson S, Lackner MR, Adai AT, et al. miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011;4:pt5.

    Article  CAS  PubMed  Google Scholar 

  85. Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451:147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137:1032–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Valastyan S, Benaich N, Chang A, et al. Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev. 2009;23:2592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–6.

    Article  CAS  PubMed  Google Scholar 

  89. Bhaumik D, Scott GK, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27:5643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hurst DR, Edmonds MD, Scott GK, et al. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res. 2009;69:1279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    Article  CAS  PubMed  Google Scholar 

  92. Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dykxhoorn DM, Wu Y, Xie H, et al. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One. 2009;4:e7181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Korpal M, Ell BJ, Buffa FM, et al. Direct targeting of Sec23a by miR-200 s influences cancer cell secretome and promotes metastatic colonization. Nat Med. 2011;17:1101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tsai MC, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  101. Mattie MD, Benz CC, Bowers J, et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Canc. 2006;5:24.

    Article  CAS  Google Scholar 

  102. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  104. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5.

    Article  PubMed  Google Scholar 

  105. Corcoran C, Friel AM, Duffy MJ, et al. Intracellular and extracellular microRNAs in breast cancer. Clin Chem. 2011;57:18–32.

    Article  CAS  PubMed  Google Scholar 

  106. Zhu W, Qin W, Atasoy U, et al. Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes. 2009;2:89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Heneghan HM, Miller N, Lowery AJ, et al. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251:499–505.

    Article  PubMed  Google Scholar 

  108. Trang P, Medina PP, Wiggins JF, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29:1580–7.

    Article  CAS  PubMed  Google Scholar 

  109. Wiggins JF, Ruffino L, Kelnar K, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70:5923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Trang P, Wiggins JF, Daige CL, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011;19:1116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pramanik D, Campbell NR, Karikari C, et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther. 2011;10:1470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17:211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 2010;28:341–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007;21:1132–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The ncRNA research in the Ma Lab is supported by an NIH Pathway to Independence (K99/R00) Award CA138572, a CPRIT First-Time, Tenure-Track Faculty Award R1004, a University of Texas STARS Award, and a Faculty Development Award from MD Anderson’s Cancer Center Support Grant CA016672 from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piao, Hl., Ma, L. Non-Coding RNAs as Regulators of Mammary Development and Breast Cancer. J Mammary Gland Biol Neoplasia 17, 33–42 (2012). https://doi.org/10.1007/s10911-012-9245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-012-9245-5

Keywords

Navigation