Skip to main content

Advertisement

Log in

MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small (18–22 nucleotide) non-coding, endogenous regulatory RNA molecules, and they regulate gene expression at the post-transcriptional level through binding to their target mRNAs by base-pairing and subsequently inducing either translational repression or mRNA destabilization by plants, animals, and some viruses. In this study, combining microarray techniques with qRT-PCR, we found that miR-126-3p expression showed significant difference in the mouse mammary cycle during pregnancy, particularly on transition from pregnancy to lactation. Bioinformatics were used to predict target gene of miR-126-3p, and luciferase activity assay to test it, it showed that the progesterone receptor (PGR) 3′UTR is directly targeted by miR-126-3p. In this study, mouse mammary epithelial cells as cell model in vitro were used to study the function of miR-126-3p. Using gene silencing and over-expression for miR-126-3p, the expression of PGR protein and the secretion of casein were detected by western blotting and HPLC, respectively. To determine whether miR-126-3p can affect mouse mammary epithelial cells viability, cells were analyzed by CASY-YY. In conclusion, PGR gene confirmed miR-126-3p target genes through luciferase activity and western blotting. And miR-126-3p could also inhibit proliferation of mouse mammary epithelial cells (P < 0.01) and expression of β-casein (P < 0.01), and down-regulate PGR protein (P < 0.05). Our results suggested that miR-126-3p inhibited expression of PGR protein level as well as the proliferation of mammary epithelial cells, therefore miR-126-3p could play an important role in the process of mammary gland development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun Y, Bai Y, Zhang F, Wang Y, Guo Y, Guo L (2010) miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun 391:1483–1489

    Article  PubMed  CAS  Google Scholar 

  2. Wang S, Aurora AB, Johnson BA et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271

    Article  PubMed  Google Scholar 

  3. Silveri L, Tilly G, Vilotte JL, Le Provost F (2006) MicroRNA involvement in mammary gland development and breast cancer. Reprod Nutr Dev 46:549–556

    Article  PubMed  CAS  Google Scholar 

  4. Zhu N, Zhang D, Xie H, Zhou Z, Chen H, Hu T, Bai Y, Shen Y, Yuan W, Jing Q, Qin Y (2011) Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem 35:157–164

    Article  Google Scholar 

  5. Wang CM, Li QZ (2007) Identification of differentially expressed microRNAs during the development of Chinese murine mammary gland. J Genet Genomics 34(11):966–973

    Article  PubMed  CAS  Google Scholar 

  6. Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  PubMed  CAS  Google Scholar 

  7. Lydon JP, Sivaraman L, Conneely OM (2000) A reappraisal of progesterone action in the mammary gland. J Mammary Gland Biol Neoplasia 5:325–338

    Article  PubMed  CAS  Google Scholar 

  8. Mulac-Jericevic B, Conneely OM (2004) Reproductive tissue selective actions of progesterone receptors. Reproduction 128(2):139–146

    Article  PubMed  CAS  Google Scholar 

  9. Santos SJ, Aupperlee MD, Xie J et al (2009) Progesterone receptor A-regulated gene expression in mammary organoid cultures. J Steroid Biochem Mol Biol 115:161–172

    Article  PubMed  CAS  Google Scholar 

  10. Boutinaud M, Guinard-Flamenta J, Jammes H (2004) The number and activity of mammary epithelial cells, determining factors for milk production. Reprod Nutr Dev 44:499–508

    Article  PubMed  Google Scholar 

  11. Haslam SZ, Levely ML, Estrogen (1985) Estrogen responsiveness of normal mouse mammary cells in primary cell culture: association of mammary fibroblasts with estrogenic regulation of progesterone receptors. Endocrinology 116:1835–1844

    Article  PubMed  CAS  Google Scholar 

  12. Sunil N, Bennett JM, Haslam SZ (2002) Hepatocyte growth factor is required for progestin-induced epithelial cell proliferation and alveolar-like morphogenesis in serum-free culture of normal mammary epithelial cells. Endocrinology 143:2953–2960

    Article  PubMed  CAS  Google Scholar 

  13. Haslam SZ, Drolet A, Smith K, Tan M, Aupperlee M (2008) Progestin-regulated luminal cell and myoepithelial cell-specific responses in mammary organoid culture. Endocrinology 149:2098–2107

    Article  PubMed  CAS  Google Scholar 

  14. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2 (−ΔΔCT) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  15. Musiyenko A, Bitko V (2008) Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCap cells. J Mol Med 86(3):313–322

    Article  PubMed  CAS  Google Scholar 

  16. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311

    Article  PubMed  CAS  Google Scholar 

  17. Liu B, Peng X-C, Zheng X-L, Wang J, Qin Y-W (2009) MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 66:169–175

    Article  PubMed  Google Scholar 

  18. Fish JE, Santoro MM, Morton SU et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  PubMed  CAS  Google Scholar 

  19. Shen WF, Hu YL, Uttarwar L, Passegue E, Largman C (2008) MicroRNA-126 regulates HOXA9 by binding to the homeobox. Mol Cell Biol 14:4609–4619

    Article  Google Scholar 

  20. Guo C, Sah JF, Beard L, Willson JK, MarkowitZ SD, Guda K (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 47(11):939–946

    Article  PubMed  CAS  Google Scholar 

  21. Zhang J, Du YY, Lin YF et al (2008) The cell growth suppressor, miR-126, targets IRS-1. Biochem Biophys Res Commun 377:136–140

    Article  PubMed  CAS  Google Scholar 

  22. Calin GA, Dumirtu CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miRl6 at l3q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529

    Article  PubMed  CAS  Google Scholar 

  23. Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in coloectal neoplasia. Mol Cancer Res 1:882–891

    PubMed  CAS  Google Scholar 

  24. Takamizawa J, Konishi H, Yanaagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  25. Hanke M, Hoefig K, Merz H et al (2009) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28:1078–1439

    Google Scholar 

  26. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    Article  PubMed  CAS  Google Scholar 

  27. Harris TA, Yamakuehi M, Ferlito M, Mendell JT, Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105:1516–1521

    Article  PubMed  CAS  Google Scholar 

  28. Anderson E (2002) The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res 4:197–201

    Article  PubMed  CAS  Google Scholar 

  29. Soyal S, Ismail PM, Li J, Mulac-Jericevic B, Conneely OM, Lydon JP (2002) Progesterone’s role in mammary gland development and tumorigenesis as disclosed by experimental mouse genetics. Breast Cancer Res 4:191–196

    Article  PubMed  CAS  Google Scholar 

  30. Mulac-Jericevic B, Conneely OM (2004) Reproductive tissue selective actions of progesterone receptors. Reproduction 128:139–146

    Article  PubMed  CAS  Google Scholar 

  31. Li-Min L, Qing-Zhang L, Chun-Mei W et al (2009) Impact of miR-221 on mouse mammary epithelial cells and lactation. Chin J Biochem Mol Biol 25(5):454–458

    Google Scholar 

  32. Chun-Mei W, Qing-Zhang L, Ye L (2008) miR-138 function and its targets on mouse mammary epithelial cells. Prog Biochem Biophys 35(7):834–838

    Google Scholar 

  33. Tanaka T, Haneda S, Imakawa K, Sakai S, Nagaoka K (2009) A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression. Differentiation 77:181–187

    Article  PubMed  CAS  Google Scholar 

  34. Jerry DJ, Kuperwasser C, Downing SR, Pinkas J, He C, Dickinson E et al (1998) Delayed involution of the mammary epithelium in BALB/c-p53null mice. Oncogene 17:2305–2312

    Article  PubMed  CAS  Google Scholar 

  35. Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L (2002) Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology 143:3641–3650

    Article  PubMed  CAS  Google Scholar 

  36. Chapman RS, Lourenco P, Tonner E, Flint D, Selbert S, Takeda K et al (2000) The role of Stat3 in apoptosis and mammary gland involution. Conditional deletion of Stat3. Adv Exp Med Biol 480:129–138

    Article  PubMed  CAS  Google Scholar 

  37. Proietti CJ, Béguelin W, Flaqué MC, Cayrol F, Rivas MA, Tkach M, Charreau EH, Schillaci R, Elizalde PV (2011) Novel role of activator of transcription 3 as a progesterone receptor coactivator in breast cancer. Steroids 76:381–392

    Article  PubMed  CAS  Google Scholar 

  38. Shyamala G, Barcellos-Hoff MH, Toft D, Yang X (1997) In situ localization of progesterone receptors in normal mouse mammary glands: absence of receptors in the connective and adipose stroma and a heterogeneous distribution in the epithelium. J Steroid Biochem Mol Biol 63:251–259

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by NSFC (Natural Science Foundation of China, Grant No.31072103). We thank department of animal biochemistry in the Centre of Life Science and Technique for providing laboratory equipments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, W., Li, Q., Feng, L. et al. MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland. Mol Cell Biochem 355, 17–25 (2011). https://doi.org/10.1007/s11010-011-0834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0834-1

Keywords

Navigation