Skip to main content

Advertisement

Log in

IGF-I, GH, and Sex Steroid Effects in Normal Mammary Gland Development

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Although the pubertal surge of estrogen is the immediate stimulus to mammary development, the action of estrogen depends upon the presence of pituitary growth hormone and the ability of GH to stimulate production of IGF-I in the mammary gland. Growth hormone binds to its receptor in the mammary fat pad, after which production of IGF-I mRNA and IGF-I protein occurs. It is likely that IGF-I then works through paracrine means to stimulate formation of TEBs, which then form ducts by bifurcating or trifurcating and extending through the mammary fat pad. By the time pubertal development is complete a tree-like structure of branching ducts fills the rodent mammary fat pad. In addition to requiring IGF-I in order to act, estradiol also directly synergizes with IGF-I to enhance formation of TEBs and ductal morphogenesis. Together they increase IRS-1 phosphorylation and cell proliferation, and inhibit apoptosis. In fact, the entire process of ductal morphogenesis, in oophorectomized IGF-I(−/−) knockout female mice, can occur as a result of the combined actions of estradiol and IGF-I. IGF-I also permits progesterone action in the mammary gland. Together they have been shown to stimulate a form of ductal morphogenesis, which is anatomically different from the kind induced by IGF-I and estradiol. Although both progesterone and estradiol synergize with IGF-I by increasing IGF-I action parameters, there must be other, as yet unknown mechanisms that account for the anatomical differences in the different forms of ductal morphogenesis observed (hyperplasia in response to IGF-I plus estradiol and single layered ducts in response to IGF-I plus progesterone).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

GH:

growth hormone

PRL:

prolactin

hPRL:

human prolactin

PR:

progesterone receptor

E2 :

estradiol

ERα:

estrogen receptor α

TGF-β:

transforming growth factor beta

EGF:

epidermal growth factor

References

  1. Allen E, Francis BF, Robertson LL, Colgate CE, Johnston CG, Doisy EA, Kountz WB, Gibson HV. The hormone of the ovarian follicle; its localization and action in test animals, and additional points bearing upon the internal secretion of the ovary. Am J Anat 1924;34:133–81. doi:10.1002/aja.1000340104.

    Article  CAS  Google Scholar 

  2. Stricker S, Grueter F. Action du lobe anterieur de l'hypophyse sur la montee laiteuse. Compt Rend Soc Biol 1928;99:1978–80.

    Google Scholar 

  3. Turner CW, Frank AH. The effect of the ovarian hormones Theelin and corporin upon the growth of the mammary gland of the rabbit (Research bulletin Missouri Agricultural Experiment Station). Columbia: University of Missouri, College of Agriculture, Agricultural Experiment Station; 1932; 174:1–28.

  4. Gomez ET, Turner CW. Non-effect of estrogenic hormones on mammary gland of hypophysectomized guinea pig. Proc Soc Exp Biol 1936;34:320–2.

    CAS  Google Scholar 

  5. Leonard SL, Reece RP. Failure of steroid hormones to induce mammary growth in hypophysectomized rats. Endocrinology 1942;30:32–6.

    CAS  Google Scholar 

  6. Reece RP, Turner CW, Hill RT. Mammary gland development in the hypophysectomized albino rat. Proc Soc Exp Biol Med 1936;34:204–17.

    CAS  Google Scholar 

  7. DeOme KB, Blair PB, Faulkin LJ Jr. Some characteristics of the preneoplastic hyperplastic alveolar nodules of C3H/Crgl mice. Acta Unio Int Contra Cancrum 1961;17:973–82.

    PubMed  CAS  Google Scholar 

  8. DeOme KB, Faulkin LJJ, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 1959;19:515–25.

    PubMed  CAS  Google Scholar 

  9. Lyons WR, Li CH, Johnson RE. The hormonal control of mammary growth and lactation. Rec Prog Horm Res 1958;14:219–54.

    PubMed  CAS  Google Scholar 

  10. Ferguson DJ. Endocrine control of mammary glands in C3H mice. Surgery 1956;39:30–6.

    PubMed  CAS  Google Scholar 

  11. Lyons WR, McGinty DA. Effects of estrone and progesterone on male rabbit mammary glands. I. Varying doses of progesterone. Proc Soc Exp Biol 1941;48:83–6.

    CAS  Google Scholar 

  12. Gardner WU, White A. Mammary growth in hypophysectomized male mice receiving estrogen prolactin. Proc Soc Exp Biol Med 1941;48:590–2.

    CAS  Google Scholar 

  13. Li CH, Evans HM, Simpson ME. Isolation and properties of the anterior hypophyseal growth hormone. J Biol Chem 1945;159:353–66.

    CAS  Google Scholar 

  14. Li CH. Growth and adrenocorticotropic hormones of anterior pituitary. Harvey Lect Series 1950;46:181–217.

    Google Scholar 

  15. Li CH, Simpson ME, Evans HM. Isolation of pituitary follicle-stimulating hormone (FSH). Science 1949;109:445–6. doi:10.1126/science.109.2835.445.

    Article  PubMed  CAS  Google Scholar 

  16. Daniel CW, Silberstein GB. Postnatal development of the rodent mammary gland. In: Neville MC, Daniel CW, editors. The mammary gland: development, regulation, and function. New York: Plenum; 1987. p. 1–36.

    Google Scholar 

  17. Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 2000;5:227–41. doi:10.1023/A:1026499523505.

    Article  PubMed  CAS  Google Scholar 

  18. Silberstein GB. Postnatal mammary gland morphogenesis. Microsc Res Tech 2001;52:155–62. doi:10.1002/1097-0029(20010115)52:2<155::AID-JEMT1001>3.0.CO;2-P.

    Article  PubMed  CAS  Google Scholar 

  19. Russo J, Russo IH. Development of the human mammary gland. In: Neville MC, Daniel CW, editors. The mammary gland. New York: Plenum; 1987. p. 67–93.

    Google Scholar 

  20. Kleinberg DL, Feldman M, Ruan W. IGF-I: an essential factor in terminal end bud formation and ductal morphogenesis. J Mammary Gland Biol Neoplasia 2000;5:7–17. doi:10.1023/A:1009507030633.

    Article  PubMed  CAS  Google Scholar 

  21. Humphreys RC. Programmed cell death in the terminal end bud. J Mammary Gland Biol Neoplasia 1999;4:213–20. doi:10.1023/A:1018733426625.

    Article  PubMed  CAS  Google Scholar 

  22. Daniel CW, Robinson S, Silberstein GB. The role of TGF-beta in patterning and growth of the mammary ductal tree. J Mammary Gland Biol Neoplasia 1996;1:331–41. doi:10.1007/BF02017389.

    Article  PubMed  CAS  Google Scholar 

  23. Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 2005;7:245–51. doi:10.1186/bcr1331.

    Article  PubMed  CAS  Google Scholar 

  24. Silberstein GB, Van Horn K, Hrabeta-Robinson E, Compton J. Estrogen-triggered delays in mammary gland gene expression during the estrous cycle: evidence for a novel timing system. J Endocrinol 2006;190:225–39. doi:10.1677/joe.1.06725.

    Article  PubMed  CAS  Google Scholar 

  25. Nandi S. Endocrine control of mammary-gland development and function in the C3 11/HE Crgl mouse. J Natl Cancer Inst 1958;21(6):1039–62.

    PubMed  CAS  Google Scholar 

  26. Kleinberg DL, Wood TL, Furth PA, Lee AV. Growth hormone and insulin-like growth factor I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev. 2009; in press (EPUB 2008).

  27. Ruan W, Knapp J, Chen W, Kopchick JJ, Kleinberg DL. 1997, Mammary gland development is impaired in transgenic mice overexpressing a bovine growth hormone antagonist. Program of the 79th Annual Meeting of ther Endocrine Society (Abstract)

  28. Chen WY, Wight DC, Wagner TE, Kopchick JJ. Expression of a mutated bovine growth hormone gene suppresses growth of transgenic mice. Proc Natl Acad Sci U S A 1990;87:5061–5. doi:10.1073/pnas.87.13.5061.

    Article  PubMed  CAS  Google Scholar 

  29. Chandrashekar V, Bartke A. Influence of hypothalamus and ovary on pituitary function in transgenic mice expressing the bovine growth hormone gene and in growth hormone-deficient Ames dwarf mice. Biol Reprod 1996;54:1002–8. doi:10.1095/biolreprod54.5.1002.

    Article  PubMed  CAS  Google Scholar 

  30. Andersen B, Pearse RVII, Jenne K, Sornson M, Lin SC, Bartke A, Rosenfeld MG. The Ames dwarf gene is required for Pit-1 gene activation. Dev Biol 1995;172:495–503. doi:10.1006/dbio.1995.8040.

    Article  PubMed  CAS  Google Scholar 

  31. Ruan W, Kleinberg DL. Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 1999;140:5075–81. doi:10.1210/en.140.11.5075.

    Article  PubMed  CAS  Google Scholar 

  32. Phelps CJ, Hoffman GE. Isolated deficiency of immunocytochemically detected somatostatin in Snell dwarf, but not in “Little", mice. Peptides 1987;8:1127–33. doi:10.1016/0196-9781(87)90146-X.

    Article  PubMed  CAS  Google Scholar 

  33. Slabaugh MB, Lieberman ME, Rutledge JJ, Gorski J. Growth hormone and prolactin synthesis in normal and homozygous Snell and Ames dwarf mice. Endocrinology 1981;109:1040–6.

    PubMed  CAS  Google Scholar 

  34. Godfrey P, Rahal JO, Beamer WG, Copeland NG, Jenkins NA, Mayo KE. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nat Genet 1993;4:227–31. doi:10.1038/ng0793-227.

    Article  PubMed  CAS  Google Scholar 

  35. Loladze AV, Stull MA, Rowzee AM, Demarco J, Lantry JH III, Rosen CJ, LeRoith D, Wagner KU, Hennighausen L, Wood TL. Epithelial-specific and stage-specific functions of insulin-like growth factor-I during postnatal mammary development. Endocrinology 2006;147:5412–23. doi:10.1210/en.2006-0427.

    Article  PubMed  CAS  Google Scholar 

  36. Feldman M, Ruan WF, Cunningham BC, Wells JA, Kleinberg DL. Evidence that the growth hormone receptor mediates differentiation and development of the mammary gland. Endocrinology 1993;133:1602–8. doi:10.1210/en.133.4.1602.

    Article  PubMed  CAS  Google Scholar 

  37. Kleinberg DL, Ruan WF, Catanese V, Newman CB, Feldman M. Non-lactogenic effects of growth hormone on growth and insulin-like growth factor-I messenger ribonucleic acid of rat mammary gland. Endocrinology 1990;126:3274–6.

    Article  PubMed  CAS  Google Scholar 

  38. Walden PD, Ruan WF, Feldman M, Kleinberg DL. Evidence that the mammary gland fat pad mediates the action of growth hormone in mammary gland development. Endocrinology 1998;139:659–62. doi:10.1210/en.139.2.659.

    Article  PubMed  CAS  Google Scholar 

  39. Richert MM, Wood TL. The Insulin-like growth factors (IGF) and the IGF Type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions. Endocrinology 1999;140:454–61. doi:10.1210/en.140.1.454.

    Article  PubMed  CAS  Google Scholar 

  40. Wood TL, Richert MM, Stull MA, Allar MA. The insulin-like growth factors (IGFs) and IGF binding proteins in postnatal development of murine mammary glands. J Mammary Gland Biol Neoplasia 2000;5:31–42. doi:10.1023/A:1009511131541 In Process Citation.

    Article  PubMed  CAS  Google Scholar 

  41. Kleinberg DL, Niemann W, Flamm E, Cooper P, Babitsky G, Valensi Q. Primate mammary development: effects of hypophysectomy, prolactin inhibition and growth hormone administration. J Clin Invest 1985;75:1943–50. doi:10.1172/JCI111910.

    Article  PubMed  CAS  Google Scholar 

  42. Carlsson-Skwirut C, Lake M, Hartmanis M, Hall K, Ara VR. A comparison of the biological activity of the recombinant intact and truncated insulin-like growth factor 1 (IGF-1). Biochim Biophys Acta 1989;1011:192–7. doi:10.1016/0167-4889(89)90209-7.

    Article  PubMed  CAS  Google Scholar 

  43. Ruan W, Newman CB, Kleinberg DL. Intact and amino terminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and development. Proc Natl Acad Sci U S A 1992;89:10872–6. doi:10.1073/pnas.89.22.10872.

    Article  PubMed  CAS  Google Scholar 

  44. Feldman M, Ruan W, Tappin I, Wieczorek R, Kleinberg DL. The effect of GH on estrogen receptor in the rat mammary gland. J Endocrinol 1999;163:515–22. doi:10.1677/joe.0.1630515.

    Article  PubMed  CAS  Google Scholar 

  45. Bonnette SG, Hadsell DL. Targeted disruption of the IGF-I receptor gene decreases cellular proliferation in mammary terminal end buds. Endocrinology 2001;142:4937–45. doi:10.1210/en.142.11.4937.

    Article  PubMed  CAS  Google Scholar 

  46. Stull MA, Rowzee AM, Loladze AV, Wood TL. Growth factor regulation of cell cycle progression in mammary epithelial cells. J Mammary Gland Biol Neoplasia 2004;9:15–26. doi:10.1023/B:JOMG.0000023585.95430.f4.

    Article  PubMed  Google Scholar 

  47. Lee AV, Zhang P, Ivanova M, Bonnette S, Oesterreich S, Rosen JM, Grimm S, Hovey RC, Vonderhaar BK, Kahn CR, Torres D, George J, Mohsin S, Allred DC, Hadsell DL. Developmental and hormonal signals dramatically alter the localization and abundance of insulin receptor substrate proteins in the mammary gland. Endocrinology 2003;144:2683–94. doi:10.1210/en.2002-221103.

    Article  PubMed  CAS  Google Scholar 

  48. Hadsell DL, Bonnette SG, Lee AV. Genetic manipulation of the IGF-I axis to regulate mammary gland development and function. J Dairy Sci 2002;85:365–77.

    Article  PubMed  CAS  Google Scholar 

  49. Richards RG, Klotz DM, Walker MP, DiAugustine RP. Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology 2004;145:3106–10. doi:10.1210/en.2003-1112.

    Article  PubMed  CAS  Google Scholar 

  50. Stull MA, Richert MM, Loladze AV, Wood TL. Requirement for IGF-I in epidermal growth factor-mediated cell cycle progression of mammary epithelial cells. Endocrinology 2002;143:1872–9. doi:10.1210/en.143.5.1872.

    Article  PubMed  CAS  Google Scholar 

  51. Sebastian J, Richards RG, Walker MP, Wiesen JF, Werb Z, Derynck R, Hom YK, Cunha GR, DiAugustine RP. Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ 1998;9:777–85.

    PubMed  CAS  Google Scholar 

  52. Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci U S A 2007;104:5455–60. doi:10.1073/pnas.0611647104.

    Article  PubMed  CAS  Google Scholar 

  53. Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, Lee DC. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 1999;126:2739–50.

    PubMed  CAS  Google Scholar 

  54. Daniel CW, Silberstein GB, Van Horn K, Strickland P, Robinson S. TGF-beta 1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol 1989;135:20–30. doi:10.1016/0012-1606(89)90154-1.

    Article  PubMed  CAS  Google Scholar 

  55. Daniel CW, Robinson S, Silberstein GB. The transforming growth factors beta in development and functional differentiation of the mouse mammary gland. Adv Exp Med Biol 2001;501:61–70.

    PubMed  CAS  Google Scholar 

  56. Flint DJ, Tonner E, Allan GJ. Insulin-like growth factor binding proteins: IGF-dependent and -independent effects in the mammary gland. J Mammary Gland Biol Neoplasia 2000;5:65–73. doi:10.1023/A:1009567316520 In Process Citation.

    Article  PubMed  CAS  Google Scholar 

  57. Tonner E, Quarrie L, Travers M, Barber M, Logan A, Wilde C, Flint D. Does an IGF-binding protein (IGFBP) present in involuting rat mammary gland regulate apoptosis? Prog Growth Factor Res 1995;6:409–14. doi:10.1016/0955-2235(95)00038-0.

    Article  PubMed  CAS  Google Scholar 

  58. Ruan W, Fahlbusch F, Clemmons DR, Monaco ME, Walden PD, Silva A, Schmid HA, Kleinberg DL. SOM230 Inhibits IGF-I action in mammary gland development by pituitary independent mechanism: mediated through somatostatin subtype receptor 3? Mol Endocrinol 2006;20:426–36. doi:10.1210/me.2005-0283.

    Article  PubMed  CAS  Google Scholar 

  59. Ruan W, Monaco ME, Kleinberg DL. Progesterone stimulates mammary gland ductal morphogenesis by synergizing with and enhancing insulin-like growth factor-I action. Endocrinology 2005;146:1170–8. doi:10.1210/en.2004-1360.

    Article  PubMed  CAS  Google Scholar 

  60. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, Shyamala G, Conneely OM, O'Malley BW. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995;9:2266–78. doi:10.1101/gad.9.18.2266.

    Article  PubMed  CAS  Google Scholar 

  61. Lyons WR, Johnson RE, Cole RD, Li CH. Mammary growth and lactation in male rats. In: Smith RW, Gaebler OH, Long CNH, editors. The hypophyseal growth hormone, nature and actions. New York: McGraw Hill; 1955. p. 461–72.

    Google Scholar 

  62. Brisken C, Park S, Vass T, Lydon JP, O'Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A 1998;95:5076–81. doi:10.1073/pnas.95.9.5076.

    Article  PubMed  CAS  Google Scholar 

  63. Brisken C, Rajaram RD. Alveolar and lactogenic differentiation. J Mammary Gland Biol Neoplasia 2006;11:239–48. doi:10.1007/s10911-006-9026-0.

    Article  PubMed  Google Scholar 

  64. Woodward TL, Xie JW, Haslam SZ. The role of mammary stroma in modulating the proliferative response to ovarian hormones in the normal mammary gland. J Mammary Gland Biol Neoplasia 1998;3:117–31. doi:10.1023/A:1018738721656.

    Article  PubMed  CAS  Google Scholar 

  65. Plaut K, Maple R, Ginsburg E, Vonderhaar B. Progesterone stimulates DNA synthesis and lobulo-alveolar development in mammary glands in ovariectomized mice. J Cell Physiol 1999;180:298–304. doi:10.1002/(SICI)1097-4652(199908)180:2<298::AID-JCP17>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kleinberg.

Additional information

From the Bunnie Joan Sachs Laboratory, VA Medical Center, New York, NY, USA

Supported in part by grants from DOD W81XWH-07-1-0488 and the Foundation for Growth and Endocrinology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinberg, D.L., Ruan, W. IGF-I, GH, and Sex Steroid Effects in Normal Mammary Gland Development. J Mammary Gland Biol Neoplasia 13, 353–360 (2008). https://doi.org/10.1007/s10911-008-9103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9103-7

Keywords

Navigation