Skip to main content
Log in

The role of TGF-β in patterning and growth of the mammary ductal tree

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Evidence that transforming growth factor beta (TGF-β)4 influences pattern formation in the developing mammary gland and negatively regulates ductal growth is reviewed. In the mouse, overexpression of TGF-β transgenes during puberty reduces the rate of growth of the ductal tree and simplifies the pattern of arborization, while expression during pregnancy also interferes with lactation. Expression studies in the normal mouse gland indicate that TGF-β is synthesized in the mammary epithelium, with the three isoforms showing somewhat different spatial and temporal distributions. Exogenous TGF-β applied directly to the glandin situ inhibits epithelial cell division within hours, and strongly stimulates extracellular matrix synthesis over a longer time course. Normal human breast cells as well as certain breast cancer cell lines also secrete TGF-β and are themselves inhibited by it, suggesting an autoregulatory feedback circuit, that in some cases appears to be modulated by estradiol. Taken together, the evidence suggests a model in which growth and patterning of the mammary ductal tree are regulated, at least in part, by TGF-β operating through an autocrine feedback mechanism and by paracrine circuits associated with epithelial-stromal interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TGF-β:

Transforming growth factor beta

ECM:

extracellular matrix

HMEC:

human mammary epithelial cells

EVac:

elvax (ethylene vinyl acetate copolymer)

ER:

estrogen receptor

WAP:

whey acidic protein

MMTV:

mouse mammary tumor virus

References

  1. T. Oka, M. Yoshimura, S. Lavandero, K. Wada, and Y. Ohba (1991). Control of growth and differentiation of the mammary gland by growth factors.J. Dairy Sci. 74:2788–2800.

    Article  PubMed  CAS  Google Scholar 

  2. A. B. Roberts, M. A. Anzano, L. M. Wakefield, N. S. Roche, D. F. Stern, and M. B. Sporn (1985). Type beta transforming growth factor: A bifunctional regulator of cellular growth.Proc. Natl. Acad. Sci. U.S.A. 82:119–123.

    PubMed  CAS  Google Scholar 

  3. S. P. Ethier (1996). Human breast cancer cell lines as models of growth regulation and disease progression.J. Mam. Gland Biol. Neoplasia 1:111–121.

    CAS  Google Scholar 

  4. E. Valverius, D. Walker-Jones, S. E. Bates, M. R. Stampfer, R. Clark,et al. (1989). Production of and responsiveness to transforming growth factor beta in normal and oncogene transformed human mammary epithelial cells.Cancer Res. 49:6269–6274.

    PubMed  CAS  Google Scholar 

  5. C. Knabbe, M. E. Lippman, L. M. Wakefield, K. C. Flanders, A. Kasid,et al. (1987). Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells.Cell 48:417–428.

    Article  PubMed  CAS  Google Scholar 

  6. G. Zugmaier, B. W. Ennis, B. Deschauer, D. Katz, C. Knabbe,et al. (1989). Transforming growth factors type beta 1 and beta 2 are equipotent growth inhibitors of human breast cancer cell lines.J. Cell Physiol. 141:353–361.

    Article  PubMed  CAS  Google Scholar 

  7. H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan (1973). A human cell line from a pleural effusion derived from a breast carcinoma.J. Natl. Cancer Inst. 51:1409–1416.

    PubMed  CAS  Google Scholar 

  8. B. A. Arrick, M. Korc, and R. Derynck (1990). Differential regulation of expression of three transforming growth factor beta species in human breast cancer cell lines by estradiol.Cancer Res. 50:299–303.

    PubMed  CAS  Google Scholar 

  9. C. L. Arteaga, T. C. Dugger, A. R. Winnier, and J. T. Forbes (1993). Evidence for a positive role of transforming growth factor-beta in human breast cancer cell tumorigenesis.J. Cell Biochem. Suppl. 17G:187–193.

    Article  PubMed  CAS  Google Scholar 

  10. S. M. Gorsch, V. A. Memoli, T. A. Stukel, L. I. Gold, and B. A. Arrick (1992). Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer.Cancer Res. 52:6949–6952.

    PubMed  CAS  Google Scholar 

  11. D. F. Pierce, Jr., A. E. Gorska, A. Chytil, K. S. Meise, D. L. Page,et al. (1995). Mammary tumor suppression by transforming growth factor beta 1 transgene expression.Proc. Natl. Acad. Sci. U.S.A. 92:4254–4258.

    PubMed  CAS  Google Scholar 

  12. P. J. Miettinen, R. Ebner, A. R. Lopez, and R. F. Derynck (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: Involvement of type I receptors.J. Cell Biol. 127:2021–2036.

    PubMed  CAS  Google Scholar 

  13. S. L. Hammond, R. G. Ham, and M. R. Stampfer (1984). Serum-free growth of human mammary epithelial cells: Rapid clonal growth in defined medium and extended serial passage with pituitary extract.Proc. Natl. Acad. Sci. U.S.A. 81:5435–5439.

    PubMed  CAS  Google Scholar 

  14. M. Hosobuchi, M. R. Stampfer, and C. Berkeley (1989). Effects of transforming growth factor beta on growth of human mammary epithelial cells in culture.In Vitro Cell Devel. Biol. 25:705–713.

    CAS  Google Scholar 

  15. M. R. Stampfer, P. Yaswen, M. Alhadeff, and J. Hosoda (1993). TGF beta induction of extracellular matrix associated proteins in normal and transformed human mammary epithelial cells in culture is independent of growth effects.J. Cell Physiol. 155:210–221.

    PubMed  CAS  Google Scholar 

  16. C. H. Streuli, C. Schmidhauser, M. Kobrin, M. J. Bissell, R. Derynck, and C. Berkeley (1993). Extracellular matrix regulates expression of the TGF-beta 1 gene.J. Cell Biol. 120:253–260.

    PubMed  CAS  Google Scholar 

  17. A. B. Roberts, K. C. Flanders, P. Kondaiah, N. L. Thompson, E. van Obberghen-Shilling,et al. (1988). Transforming growth factor beta: Biochemistry and role in embryogenesis, tissue repair and remodeling, and carcinogenesis.Rec. Prog. Hormone Res. 44:157–197.

    CAS  Google Scholar 

  18. M. Ip and K. M. Darcy (1996). Three-dimensiional mammary primary culture model systems.J. Mam. Gland Biol. Neoplasia 1:91–110.

    CAS  Google Scholar 

  19. M. DuBois and J. J. Elias (1984). Subpopulations of cells in immature mouse mammary glands as detected by proliferative responses to hormones in organ culture.Devel. Biol. 106: 70–75.

    CAS  Google Scholar 

  20. M. H. Barcellos-Hoff, R. Derynck, M. L. Tsang, and J. A. Weatherbee (1994). Transforming growth factor-beta activation in irradiated murine mammary gland.J. Clin. Invest. 93:892–899.

    Article  PubMed  CAS  Google Scholar 

  21. D. F. Pierce, Jr., M. D. Johnson, Y. Matsui, S. D. Robinson, L. I. Gold,et al. (1993). Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1.Genes Devel. 7:2308–2317.

    PubMed  CAS  Google Scholar 

  22. C. Jhappan, A. G. Geiser, E. C. Kordon, D. Bagheri, L. Hennighausen,et al. (1993). Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation.Embo. J. 12:1835–1845.

    PubMed  CAS  Google Scholar 

  23. E. C. Kordon, R. A. McKnight, C. Jhappan, L. Hennighausen, G. Merlino, and G. H. Smith (1995). Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population.Devel. Biol. 168:47–61.

    CAS  Google Scholar 

  24. G. H. Smith (1996). TGF-β and functional differentiation.J. Mam. Gland Biol. Neoplasia 343–352.

  25. C. W. Daniel, G. B. Silberstein, K. Van Horn, P. Strickland, and S. Robinson (1989). TGF-beta-1-induced inhibition of mouse mammary ductal growth: Developmental specificity and characterization.Devel. Biol. 135:20–30.

    CAS  Google Scholar 

  26. M. M. Shull, T. Doetschman, and O. H. Medicine (1994). Transforming growth factor-beta 1 in reproduction and development.Mol. Reprod. Devel. 39:239–246.

    PubMed  CAS  Google Scholar 

  27. G. Proetzel, S. A. Pawlowski, M. V. Wiles, M. Yin, G. P. Boivin,et al. (1995). Transforming growth factor-beta 3 is required for secondary palate fusion.Natl. Genet. 11:409–414.

    CAS  Google Scholar 

  28. G. P. Boivin, B. A. O'Toole, I. E. Orsmby, R. J. Diebold, M. J. Eis,et al. (1995). Onset and progression of pathological lesions in transforming growth factor-beta 1-deficient mice.Am. J. Pathol. 146:276–288.

    PubMed  CAS  Google Scholar 

  29. K. B. DeOme, L. J. Faulkin, Jr., and H. A. Bern (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice.Cancer Res. 19:515–520.

    PubMed  CAS  Google Scholar 

  30. R. Langer and J. Folkman (1976). Polymers for the sustained release of proteins and other macromolecules.Nature (Lond.) 263:797–800.

    PubMed  CAS  Google Scholar 

  31. G. B. Silberstein and C. W. Daniel (1987). Reversible inhibition of mammary gland growth by transforming growth factor-beta.Science 237:291–293.

    PubMed  CAS  Google Scholar 

  32. C. W. Daniel, K. B. DeOme, J. T. Young, P. B. Blair, and L. J. Faulkin (1968). Thein vivo lifespan of normal and preneoplastic mouse mammary glands: A serial transplantation study.Proc. Natl. Acad. Sci. U.S.A. 61:52–60.

    Google Scholar 

  33. S. Coleman and C. W. Daniel (1990). Inhibition of mouse mammary ductal morphogenesis and down-regulation of the EGF receptor by epidermal growth factor.Devel. Biol. 137:425–433.

    CAS  Google Scholar 

  34. G. H. Smith and D. Medina (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland.J. Cell Sci. 89:173–183.

    Google Scholar 

  35. G. B. Silberstein and C. W. Daniel (1982). Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct.Devel. Biol. 90:215–222.

    CAS  Google Scholar 

  36. A. Rizzino (1988). Transforming growth factor beta: Multiple effects on cell differentiation and extracellular matrices.Devel. Biol. 130:411–422.

    CAS  Google Scholar 

  37. J. M. Williams and C. W. Daniel (1983). Mammary ductal elongation: Differentiation of myoepithelium during branching morphogenesis.Devel. Biol. 97:274–290.

    CAS  Google Scholar 

  38. C. Streuli, N. Bailey, and M. Bissell (1991). Control of mammary epithelial differentiation: Basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity.J. Cell Biol. 115:1383–1395.

    PubMed  CAS  Google Scholar 

  39. G. B. Silberstein and C. W. Daniel (1984). Glycosaminoglycans in the basal lamina and the extracellular matrix of serially aged mouse mammary ducts.Mech. Age. Devel. 24:151–162.

    CAS  Google Scholar 

  40. G. B. Silberstein, P. Strickland, S. Coleman, and C. W. S. C. Daniel (1990). Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland.J. Cell Biol. 110:2209–2219.

    PubMed  CAS  Google Scholar 

  41. P. Schmid, D. Cox, G. Bilbe, R. Maier, and G. McMaster (1991). Differential expression of TGF-beta 1,2, and 3 genes during mouse embryogenesis.Development 111:117–130.

    PubMed  CAS  Google Scholar 

  42. F. Millan, F. Denhez, P. Kondaiah, and R. Akhurst (1991). Embryonic gene expression of TGF-beta 1, 2, and 3 suggest different developmental functionsin vivo.Development 111:131–144.

    PubMed  CAS  Google Scholar 

  43. S. D. Robinson, A. B. Roberts, and C. W. S. C. Daniel (1993). TGF beta suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy.J. Cell Biol. 120:245–251.

    PubMed  CAS  Google Scholar 

  44. S. D. Robinson, G. B. Silberstein, A. B. Roberts, K. C. Flanders, and C. W. Daniel (1991). Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development.Development 113:867–878.

    PubMed  CAS  Google Scholar 

  45. U. I. Heine, E. F. Munoz, K. C. Flanders, L. R. Ellingsworth, P. H. Lam,et al. (1987). Role of transforming growth factor beta in the development of the mouse embryo.J. Cell Biol. 105:2861–2876.

    PubMed  CAS  Google Scholar 

  46. S. A. Lehnert and R. J. Akhurst (1988). Embryonic expression pattern of TGF-beta type-1 RNA suggests both paracrine and autocrine mechanisms of action.Development 104:263–273.

    PubMed  CAS  Google Scholar 

  47. R. J. Akhurst, S. A. Lehnert, A. Faissner, and E. Duffie (1990). TGF beta in murine morphogenetic processes: The early embryo and cardiogenesis.Development 108:645–656.

    PubMed  CAS  Google Scholar 

  48. A. B. Roberts and M. B. Sporn (1990). The transforming growth factor-betas. In M. B. Sporn and A. B. Roberts (eds.),Peptide Growth Factors and Their Receptors, Springer-Verlag, Heidelberg.

    Google Scholar 

  49. C. W. Daniel, G. B. Silberstein, and P. Strickland (1987). Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography.Cancer Res. 47:6052–6057.

    PubMed  CAS  Google Scholar 

  50. S. D. Robinson, G. B. Silberstein, A. B. Roberts, K. C. Flanders, and C. W. S. C. Daniel (1991). Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development.Development 113:867–878.

    PubMed  CAS  Google Scholar 

  51. G. B. Silberstein, K. C. Flanders, A. B. Roberts, and C. W. S. C. Daniel (1992). Regulation of mammary morphogenesis: Evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1.Devel. Biol. 152:354–362.

    CAS  Google Scholar 

  52. E. Ruoslahti and Y. Yamaguchi (1991). Proteoglycans as modulators of growth factor activities.Cell 64:867–869.

    PubMed  CAS  Google Scholar 

  53. Y. Yamaguchi, D. M. Mann, and E. Ruoslahti (1990). Negative regulation of transforming growth factor-beta by the proteogly-can decorin.Nature 346:281–284.

    Article  PubMed  CAS  Google Scholar 

  54. Y. Yamaguchi and E. Ruoslahti (1988). Expression of human proteoglycan in chinese hamster ovary cells inhibits cell proliferation.Nature 336:224–246.

    Google Scholar 

  55. M. H. Barcellos-Hoff Latency and activation in the control of TGF-β.J. Mam. Gland Biol. Neoplasia 1:353–363.

  56. Y. Friedmann, C. A. Daniel, and P. Strickland (1994). Hox genes in normal and neoplastic mouse mammary gland.Cancer Res. 54:5981–5985.

    PubMed  CAS  Google Scholar 

  57. J. M. Bradbury, P. A. Edwards, C. C. Niemeyer, and T. C. Dale (1995).Wnt-4 expression induces a pregnancy-like growth pattern in reconstituted mammary glands in virgin mice.Devel. Biol. 170:553–563.

    CAS  Google Scholar 

  58. B. J. Gavin and A. P. McMahon (1992). Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland.Mol. Cell Biol. 12:2418–2423.

    PubMed  CAS  Google Scholar 

  59. S. J. Weber-Hall, D. J. Phippard, C. C. Niemeyer, and T. C. Dale (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland.Differentiation 57:205–214.

    Article  PubMed  CAS  Google Scholar 

  60. J. Russo and I. H. Russo (1987). Development of the human mammary gland. In M. C. Neville and C. W. Daniel (eds.),The Mammary Gland: Development, Regulation, and Function, Plenum Press, New York, pp. 67–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Daniel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, C.W., Robinson, S. & Silberstein, G.B. The role of TGF-β in patterning and growth of the mammary ductal tree. J Mammary Gland Biol Neoplasia 1, 331–341 (1996). https://doi.org/10.1007/BF02017389

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02017389

Key words

Navigation