Skip to main content

Advertisement

Log in

Alveolar and Lactogenic Differentiation

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The mouse mammary gland is a complex tissue that proliferates and differentiates under the control of systemic hormones during puberty, pregnancy and lactation. Once a highly branched milk duct system has been established, during mid/late pregnancy, alveoli, little saccular outpouchings, sprout all over the ductal system and differentiate to become the sites of milk secretion. Here, we review the emerging network of the signaling pathways that connects hormonal stimuli with locally produced signaling molecules and the components of intracellular pathways that regulate alveologenesis and lactation. The powerful tools of mouse genetics have been instrumental in uncovering many of the signaling components involved in controlling alveolar and lactogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

WAP:

whey acidic protein

XIAP:

x-linked inhibitor of apoptosis protein

GH:

growth hormone

PTHrP:

parathyroid hormone related peptide

GR:

glucocorticoid receptor

ER:

estrogen receptor

PR:

progesterone receptor

PrlR:

prolactin receptor

RANKL:

receptor activator of NFκB ligand

EGF:

epidermal growth factor

HRG1:

heregulin 1

GAS:

γ-interferon activation sequence

JAK2:

janus 2 kinase

SOCS:

suppressor of cytokine signaling proteins

STAT:

signal transducer and activator of transcription

C/EBP:

CCAAT/enhancer binding proteins

CDK:

cyclin dependent kinase

MMTV:

mouse mammary tumor virus

LMO4:

LIM domain only 4

ErbB4:

v-erb-a erythroblastic leukemia viral oncogene homolog 4

ID2:

inhibitor of DNA binding 2

Ets:

v-ets erythroblastosis virus E26 oncogene homolog 1

ELF-5:

E74-like factor 5

IGF-2:

insulin-like growth factor 2

ERK1:

extracellular-signal-regulated kinase 1

IKKα:

Inhibitor of kappa B kinase alpha

References

  1. Brisken C. Hormonal control of alveolar development and its implications for breast carcinogenesis. J Mammary Gland Biol Neoplasia 2002;7:39–48.

    Article  PubMed  Google Scholar 

  2. Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 2002;7:49–66.

    Article  PubMed  Google Scholar 

  3. Robinson GW, Johnson PF, Hennighausen L, Sterneck E. The C/EBPbeta transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes Dev 1998;12:1907–16.

    CAS  PubMed  Google Scholar 

  4. Jensen EV, Cheng G, Palmieri C, Saji S, Makela S, Van Noorden S, et al. Estrogen receptors and proliferation markers in primary and recurrent breast cancer. Proc Natl Acad Sci USA 2001;98:15197–202.

    Article  CAS  PubMed  Google Scholar 

  5. Neville MC, Morton J. Physiology and endocrine changes underlying human lactogenesis II. J Nutr 2001;131:3005S–8S.

    CAS  PubMed  Google Scholar 

  6. MacMahon B, Cole P, Lin TM, Lowe CR, Mirra AP, Ravnihar B, et al. Age at first birth and breast cancer risk. Bull World Health Organ 1970;43:209–21.

    CAS  PubMed  Google Scholar 

  7. Boussadia O, Kutsch S, Hierholzer A, Delmas V, Kemler R. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 2002;115:53–62.

    Article  CAS  PubMed  Google Scholar 

  8. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol 2005;6:715–25.

    Article  CAS  PubMed  Google Scholar 

  9. Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 2005;6:507–12.

    Article  CAS  PubMed  Google Scholar 

  10. Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci USA 1998;95:5076–81.

    Article  CAS  PubMed  Google Scholar 

  11. Robinson GW, Hennighausen L, Johnson PF. Side-branching in the mammary gland: the progesterone-Wnt connection. Genes Dev 2000;14:889–94.

    CAS  PubMed  Google Scholar 

  12. Wintermantel TM, Mayer AK, Schutz G, Greiner EF. Targeting mammary epithelial cells using a bacterial artificial chromosome. Genesis 2002;33:125–30.

    Article  CAS  PubMed  Google Scholar 

  13. Olayioye MA, Kaufmann H, Pakusch M, Vaux DL, Lindeman GJ, Visvader JE. XIAP-deficiency leads to delayed lobuloalveolar development in the mammary gland. Cell Death Differ 2005;12:87–90.

    Article  CAS  PubMed  Google Scholar 

  14. Sum EY, Shackleton M, Hahm K, Thomas RM, O’Reilly LA, Wagner KU, et al. Loss of the LIM domain protein Lmo4 in the mammary gland during pregnancy impedes lobuloalveolar development. Oncogene 2005;24:4820–8.

    Article  CAS  PubMed  Google Scholar 

  15. Clevenger CV, Plank TL. Prolactin as an autocrine/paracrine factor in breast tissue. J Mammary Gland Biol Neoplasia 1997;2:59–68.

    Article  CAS  PubMed  Google Scholar 

  16. Mol JA, Lantinga-van Leeuwen I, van Garderen E, Rijnberk A. Progestin-induced mammary growth hormone (GH) production. Adv Exp Med Biol 2000;480:71–6.

    Article  CAS  PubMed  Google Scholar 

  17. Woodside B, Abizaid A, Walker C. Changes in leptin levels during lactation: implications for lactational hyperphagia and anovulation. Horm Behav 2000;37:353–65.

    Article  CAS  PubMed  Google Scholar 

  18. Lippuner K, Zehnder HJ, Casez JP, Takkinen R, Jaeger P. PTH-related protein is released into the mother’s bloodstream during location: evidence for beneficial effects on maternal calcium–phosphate metabolism. J Bone Miner Res 1996;11:1394–9.

    Article  CAS  PubMed  Google Scholar 

  19. Naylor MJ, Oakes SR, Gardiner-Garden M, Harris J, Blazek K, Ho TW, et al. Transcriptional changes underlying the secretory activation phase of mammary gland development. Mol Endocrinol 2005;19:1868–83.

    Article  CAS  PubMed  Google Scholar 

  20. Rosen JM, Zahnow C, Kazansky A, Raught B. Composite response elements mediate hormonal and developmental regulation of milk protein gene expression. Biochem Soc Symp 1998;63:101–13.

    CAS  PubMed  Google Scholar 

  21. Wintermantel TM, Bock D, Fleig V, Greiner EF, Schutz G. The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production. Mol Endocrinol 2005;19:340–9.

    Article  CAS  PubMed  Google Scholar 

  22. Capuco AV, Kahl S, Jack LJ, Bishop JO, Wallace H. Prolactin and growth hormone stimulation of lactation in mice requires thyroid hormones. Proc Soc Exp Biol Med 1999;221:345–51.

    Article  CAS  PubMed  Google Scholar 

  23. Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994;63:451–86.

    Article  CAS  PubMed  Google Scholar 

  24. Beato M, Herrlich P, Schutz G. Steroid hormone receptors: many actors in search of a plot. Cell 1995;83:851–7.

    Article  CAS  PubMed  Google Scholar 

  25. Jarvinen TA, Pelto-Huikko M, Holli K, Isola J. Estrogen receptor beta is coexpressed with ERalpha and PR and associated with nodal status, grade, and proliferation rate in breast cancer. Am J Pathol 2000;156:29–35.

    CAS  PubMed  Google Scholar 

  26. Pelletier G, El-Alfy M. Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J Clin Endocrinol Metab 2000;85:4835–40.

    Article  CAS  PubMed  Google Scholar 

  27. Saji S, Jensen EV, Nilsson S, Rylander T, Warner M, Gustafsson JA. Estrogen receptors alpha and beta in the rodent mammary gland. Proc Natl Acad Sci USA 2000;97:337–42.

    Article  CAS  PubMed  Google Scholar 

  28. Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, Mark M. Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 2000;127:4277–91.

    CAS  PubMed  Google Scholar 

  29. Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA 2006;103:2196–201.

    Article  CAS  PubMed  Google Scholar 

  30. Forster C, Makela S, Warri A, Kietz S, Becker D, Hultenby K, et al. Involvement of estrogen receptor beta in terminal differentiation of mammary gland epithelium. Proc Natl Acad Sci USA 2002;99:15578–83.

    Article  CAS  PubMed  Google Scholar 

  31. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA, Jr., et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 1995;9:2266–78.

    CAS  PubMed  Google Scholar 

  32. Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci USA 2003;100:9744–9.

    Article  CAS  PubMed  Google Scholar 

  33. Brisken C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA, et al. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol 1999;210:96–106.

    Article  CAS  PubMed  Google Scholar 

  34. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 1997;11:167–78.

    CAS  PubMed  Google Scholar 

  35. Wagner KU, Krempler A, Triplett AA, Qi Y, George NM, Zhu J, et al. Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol Cell Biol 2004;24:5510–20.

    Article  CAS  PubMed  Google Scholar 

  36. Shillingford JM, Miyoshi K, Robinson GW, Grimm SL, Rosen JM, Neubauer H, et al. Jak2 is an essential tyrosine kinase involved in pregnancy-mediated development of mammary secretory epithelium. Mol Endocrinol 2002;16:563–70.

    Article  CAS  PubMed  Google Scholar 

  37. Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX, et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 2004;24:8037–47.

    Article  CAS  PubMed  Google Scholar 

  38. Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, et al. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol 2001;155:531–42.

    Article  CAS  PubMed  Google Scholar 

  39. Galsgaard ED, Friedrichsen BN, Nielsen JH, Moldrup A. Expression of dominant-negative STAT5 inhibits growth hormone- and prolactin-induced proliferation of insulin-producing cells. Diabetes 2001;50(Suppl 1):S40–1.

    CAS  PubMed  Google Scholar 

  40. Ma FY, Anderson GM, Gunn TD, Goffin V, Grattan DR, Bunn SJ. Prolactin specifically activates signal transducer and activator of transcription 5b in neuroendocrine dopaminergic neurons. Endocrinology 2005;146:5112–9.

    Article  CAS  PubMed  Google Scholar 

  41. Brisken C, Ayyannan A, Nguyen C, Heineman A, Reinhardt F, Tan J, et al. IGF-2 is a mediator of prolactin-induced morphogenesis in the breast. Dev Cell 2002;3:877–87.

    Article  CAS  PubMed  Google Scholar 

  42. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000;103:41–50.

    Article  CAS  PubMed  Google Scholar 

  43. Srivastava S, Matsuda M, Hou Z, Bailey JP, Kitazawa R, Herbst MP, et al. Receptor activator of NF-kappaB ligand induction via Jak2 and Stat5a in mammary epithelial cells. J Biol Chem 2003;278:46171–8.

    Article  CAS  PubMed  Google Scholar 

  44. Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 2001;107:763–75.

    Article  CAS  PubMed  Google Scholar 

  45. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006;440:692–6.

    Article  CAS  PubMed  Google Scholar 

  46. Kim NS, Kim HJ, Koo BK, Kwon MC, Kim YW, Cho Y, et al. Receptor activator of NF-kappaB ligand regulates the proliferation of mammary epithelial cells via Id2. Mol Cell Biol 2006; 26:1002–13.

    Article  CAS  PubMed  Google Scholar 

  47. Long W, Wagner KU, Lloyd KC, Binart N, Shillingford JM, Hennighausen L, et al. Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development 2003;130:5257–68.

    Article  CAS  PubMed  Google Scholar 

  48. Jones FE, Welte T, Fu XY, Stern DF. ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol 1999;147:77–88.

    Article  CAS  PubMed  Google Scholar 

  49. Watson CJ, Burdon TG. Prolactin signal transduction mechanisms in the mammary gland: the role of the Jak/Stat pathway. Rev Reprod 1996;1:1–5.

    Article  CAS  PubMed  Google Scholar 

  50. Lindeman GJ, Wittlin S, Lada H, Naylor MJ, Santamaria M, Zhang JG, Blazek KD, Kazlaukas M, Hilton HN, Wittlin S, Alexander WS, Lindeman GJ. Visvader JE, Ormandy CJ. SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev 2001;15:1631–6.

    Article  CAS  PubMed  Google Scholar 

  51. Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, Blazek KD, Kazlaukas M, Hilton HN, Wittlin S, Alexandra WS, Lindeman GJ, Visvader JE, Ormandy CJ. Socs2 and Elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol 2006 May; 20(5):1177–87.

    Article  CAS  PubMed  Google Scholar 

  52. Park DS, Lee H, Riedel C, Hulit J, Scherer PE, Pestell RG, et al. Prolactin negatively regulates caveolin-1 gene expression in the mammary gland during lactation, via a Ras-dependent mechanism. J Biol Chem 2001;276:48389–97.

    CAS  PubMed  Google Scholar 

  53. Park DS, Lee H, Frank PG, Razani B, Nguyen AV, Parlow AF, et al. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell 2002;13:3416–30.

    Article  CAS  PubMed  Google Scholar 

  54. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 1997;11:179–86.

    CAS  PubMed  Google Scholar 

  55. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 1997;94:7239–44.

    Article  CAS  PubMed  Google Scholar 

  56. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 1998;93:841–50.

    Article  CAS  PubMed  Google Scholar 

  57. Brisken C, Ayyanan A, Doppler W. Prolactin signaling and Stat5: going their own separate ways? Breast Cancer Res 2002;4:209–12.

    Article  CAS  PubMed  Google Scholar 

  58. Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev 2004;15:435–55.

    Article  CAS  PubMed  Google Scholar 

  59. Clark DE, Williams CC, Duplessis TT, Moring KL, Notwick AR, Long W, et al. ERBB4/HER4 potentiates STAT5A transcriptional activity by regulating novel STAT5A serine phosphorylation events. J Biol Chem 2005;280:24175–80.

    Article  CAS  PubMed  Google Scholar 

  60. Lapinskas EJ, Palmer J, Ricardo S, Hertzog PJ, Hammacher A, Pritchard MA. A major site of expression of the ets transcription factor Elf5 is epithelia of exocrine glands. Histochem Cell Biol 2004;122:521–6.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou J, Chehab R, Tkalcevic J, Naylor MJ, Harris J, Wilson TJ, et al. Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. Embo J 2005;24:635–44.

    Article  CAS  PubMed  Google Scholar 

  62. Rameil P, Lecine P, Ghysdael J, Gouilleux F, Kahn-Perles B, Imbert J. IL-2 and long-term T cell activation induce physical and functional interaction between STAT5 and ETS transcription factors in human T cells. Oncogene 2000;19:2086–97.

    Article  CAS  PubMed  Google Scholar 

  63. Mori S, Nishikawa SI, Yokota Y. Lactation defect in mice lacking the helix-loop-helix inhibitor Id2. Embo J 2000;19:5772–81.

    Article  CAS  PubMed  Google Scholar 

  64. Miyoshi K, Meyer B, Gruss P, Cui Y, Renou JP, Morgan FV, et al. Mammary epithelial cells are not able to undergo pregnancy-dependent differentiation in the absence of the helix-loop-helix inhibitor Id2. Mol Endocrinol 2002;16:2892–901.

    Article  CAS  PubMed  Google Scholar 

  65. Williams SC, Cantwell CA, Johnson PF. A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev 1991;5:1553–67.

    CAS  PubMed  Google Scholar 

  66. Seagroves TN, Krnacik S, Raught B, Gay J, Burgess-Beusse B, Darlington GJ, et al. C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev 1998;12:1917–28.

    CAS  PubMed  Google Scholar 

  67. Grimm SL, Seagroves TN, Kabotyanski EB, Hovey RC, Vonderhaar BK, Lydon JP, et al. Disruption of steroid and prolactin receptor patterning in the mammary gland correlates with a block in lobuloalveolar development. Mol Endocrinol 2002;16:2675–91.

    Article  CAS  PubMed  Google Scholar 

  68. Karaya K, Mori S, Kimoto H, Shima Y, Tsuji Y, Kurooka H, et al. Regulation of Id2 expression by CCAAT/enhancer binding protein beta. Nucleic Acids Res 2005;33:1924–34.

    Article  CAS  PubMed  Google Scholar 

  69. Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 1995;9:2364–72.

    CAS  PubMed  Google Scholar 

  70. Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 1995;82:621–30.

    Article  CAS  PubMed  Google Scholar 

  71. Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cells 2006;9:13–22.

    Article  CAS  Google Scholar 

  72. Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by cyclin D1. Cell 1997;88:405–15.

    Article  CAS  PubMed  Google Scholar 

  73. Ewen ME, Lamb J. The activities of cyclin D1 that drive tumorigenesis. Trends Mol Med 2004;10:158–62.

    Article  CAS  PubMed  Google Scholar 

  74. Klinowska TC, Alexander CM, Georges-Labouesse E, Van der Neut R, Kreidberg JA, Jones CJ, et al. Epithelial development and differentiation in the mammary gland is not dependent on alpha 3 or alpha 6 integrin subunits. Dev Biol 2001;233:449–67.

    Article  CAS  PubMed  Google Scholar 

  75. Li N, Zhang Y, Naylor MJ, Schatzmann F, Maurer F, Wintermantel T, et al. Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. Embo J 2005;24:1942–53.

    Article  CAS  PubMed  Google Scholar 

  76. Naylor MJ, Li N, Cheung J, Lowe ET, Lambert E, Marlow R, et al. Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J Cell Biol 2005;171:717–28.

    Article  CAS  PubMed  Google Scholar 

  77. Nemade RV, Bierie B, Nozawa M, Bry C, Smith GH, Vasioukhin V, et al. Biogenesis and function of mouse mammary epithelium depends on the presence of functional alpha-catenin. Mech Dev 2004;121:91–9.

    Article  CAS  PubMed  Google Scholar 

  78. Strickland P, Shin GC, Plump A, Tessier-Lavigne M, Hinck L. Slit2 and netrin 1 act synergistically as adhesive cues to generate tubular bi-layers during ductal morphogenesis. Development 2006;133:823–32.

    Article  CAS  PubMed  Google Scholar 

  79. Gunther EJ, Belka GK, Wertheim GB, Wang J, Hartman JL, Boxer RB, et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. Faseb J 2002;16:283–92.

    Article  CAS  PubMed  Google Scholar 

  80. Adriance MC, Inman JL, Petersen OW, Bissell MJ. Myoepithelial cells: good fences make good neighbors. Breast Cancer Res 2005;7:190–7.

    Article  CAS  PubMed  Google Scholar 

  81. Teuliere J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze’ev A, Thiery JP, et al. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 2005;132:267–77.

    Article  CAS  PubMed  Google Scholar 

  82. Nelson CM, Bissell MJ. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol 2005;15:342–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Manfred Beleut for carefully reading the manuscript. This work was supported by funds from the National Center of Competence in Research in Molecular Oncology and Oncosuisse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathrin Brisken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brisken, C., Rajaram, R.D. Alveolar and Lactogenic Differentiation. J Mammary Gland Biol Neoplasia 11, 239–248 (2006). https://doi.org/10.1007/s10911-006-9026-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-006-9026-0

Keywords

Navigation