Skip to main content
Log in

Analysis of a chemical model system leading to chiral symmetry breaking: Implications for the evolution of homochirality

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Explaining the evolution of a predominantly homochiral environment on the early Earth remains an outstanding challenge in chemistry. We explore here the mathematical features of a simple chemical model system that simulates chiral symmetry breaking and amplification towards homochirality. The model simulates the reaction of a prochiral molecule to yield enantiomers via interaction with an achiral surface. Kinetically, the reactions and rate constants are chosen so as to treat the two enantiomeric forms symmetrically. The system, however, incorporates a mechanism whereby a random event might trigger chiral symmetry breaking and the formation of a dominant enantiomer; the non-linear dynamics of the chemical system are such that small perturbations may be amplified to near homochirality. Mathematical analysis of the behavior of the chemical system is verified by both deterministic and stochastic numerical simulations. Kinetic description of the model system will facilitate exploration of experimental validation. Our model system also supports the notion that one dominant enantiomeric structure might be a template for other critical molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.G. Blackmond, Cold Spring Harb. Perspect Biol. 2(5), a002147 (2010). doi:0.1101/cshperspect.a002147

    Article  Google Scholar 

  2. J.D. Carroll, Chirality 21, 354–358 (2009)

    Article  CAS  Google Scholar 

  3. M. Wu, S.I. Walker, P.G. Higgs, Astrobiology 12, 818–829 (2012)

    Article  CAS  Google Scholar 

  4. M. Gleiser, S.I. Walker, arXiv preprint arXiv, 1202.5048 (2012)

  5. F.C. Frank, Biochim. Biophys. Acta. 11, 459–463 (1953)

    Article  CAS  Google Scholar 

  6. P.V. Coveney, J.B. Swadling, J.A. Wattis, H.C. Greenwell, Chem. Soc. Rev. 41, 5430–5446 (2012)

    Article  CAS  Google Scholar 

  7. M. Klussmann, Genesis-In The Beginning 22, 491–508 (2012)

  8. B. Barabás, J. Tóth, G. Pályi, J. Math. Chem. 48, 457–489 (2010)

    Article  Google Scholar 

  9. D. Lavabre, J.-C. Micheau, J.R. Islas, T. Buhse, Top. Curr. Chem. 284, 67–96 (2008)

    Article  CAS  Google Scholar 

  10. D. Hochberg, M.-P. Zorzano, Chem. Phys. Lett. 431, 185–189 (2006)

    Article  CAS  Google Scholar 

  11. V.S. Gayathri, M. Rao, Europhys. Lett. 80, 28001 (2007). doi:10.1209/0295-5075/80/28001

    Article  Google Scholar 

  12. D. Todorovi, I. Gutman, M. Radulovic, Chem. Phys. Lett. 372, 464–468 (2003)

    Article  Google Scholar 

  13. M. Mauksch, S.B. Tsogoeva, Chem. Phys. Chem. 9, 2359–2371 (2008)

    Article  CAS  Google Scholar 

  14. Y. Saito, H. Hyuga, Top. Curr. Chem. 284, 97–118 (2008)

    Article  CAS  Google Scholar 

  15. R. Plasson, H. Bersini, A. Commeyras, Proc. Natl. Acad. Sci. USA 101, 16733–16738 (2004)

    Article  CAS  Google Scholar 

  16. M. Gleiser, B.J. Nelson, S.I. Walker, Orig. Life Evol. Biosph. 42, 333–346 (2012)

    Article  CAS  Google Scholar 

  17. K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 378, 767–768 (1995)

    Article  CAS  Google Scholar 

  18. M. Maioli, K. Micskei, L. Caglioti, C. Zucchi, G. Pályi, J. Math. Chem. 43(4), 1505–1515 (2008)

    Article  CAS  Google Scholar 

  19. K. Micskei, G. Rábai, E. Gál, L. Caglioti, G. Pályi, J. Phys. Chem. B. 112, 9196–9200 (2008)

    Article  CAS  Google Scholar 

  20. L. Caglioti, G. Pályi, Rend. Fis. Acc. Lincei. 24, 191–196 (2013)

    Article  Google Scholar 

  21. P.C. Joshi, M.F. Aldersley, J.P. Ferris, Adv. Space Res. (2012). http://dx.doi.org/10.1016/j.asr.2012.09.036

  22. P.C. Joshi, M.F. Aldersley, J.P. Ferris, Orig. Life Evol. Biosph. 41, 213–236 (2011)

    Article  CAS  Google Scholar 

  23. D.K. Kondepudi, K. Asakura, Acc. Chem. Res. 34, 946–954 (2001)

    Article  CAS  Google Scholar 

  24. C. Viedma, P. Cintas, Chem. Commun. 47, 12786–12788 (2011)

    Article  CAS  Google Scholar 

  25. W.L. Noorduin, T. Izumi, A. Millemaggi, M. Leeman, H. Meekes, W.J.P. Van Enckevort, R.M. Kellogg, B. Kaptein, E. Vlieg, D.G. Blackmond, J. Am. Chem. Soc. 130(4), 1158–1159 (2008)

    Article  CAS  Google Scholar 

  26. J.A. Wattis, Orig. Life Evol. Biosph. 41, 133–173 (2011)

    Article  CAS  Google Scholar 

  27. R.H. Perry, C. Wu, M. Nefliu, R.G. Cooks, Chem. Commun. 10, 1071–1073 (2007)

    Article  Google Scholar 

  28. S.C. Nanita, R.G. Cooks, Angew. Chem. Int. Ed. Engl. 45, 554–569 (2006)

    Article  CAS  Google Scholar 

  29. A.L. Weber, S. Pizzarello, Proc. Natl. Acad. Sci. USA 103, 12713–12717 (2006)

    Article  CAS  Google Scholar 

  30. A.L. Caglioti, K. Micskei, G. Pályi, Chirality 23.1, 65–68 (2011)

    Article  Google Scholar 

  31. J.E. Hein, E. Tse, D.G. Blackmond, Nat. Chem. 3, 704–706 (2011)

    Article  CAS  Google Scholar 

  32. J.E. Hein, D.G. Blackmond, Acc. Chem. Res. 45, 2045–54 (2012)

    Article  CAS  Google Scholar 

  33. R. Breslow, Z.L. Cheng, Proc. Natl. Acad. Sci. USA 107, 5723–5725 (2010)

    Article  CAS  Google Scholar 

  34. B.A. Pross, R. Pascal, Open Biol. 3, 120190 (2013)

    Article  Google Scholar 

  35. J.C. Ianni, Kintecus, Windows Version 4.01 (2010) Available online at: http://www.kintecus.com and Kintecus Manual: http://www.kintecus.com/Kintecus_V400.pdf. Accessed 25 June 2013

  36. J.C. Ianni, Comput. Fluid Solid Mech. 2003, 1368–1372 (2003)

    Google Scholar 

  37. W.D. Hinsberg, F.A. Houle, Chemical Kinetics Simulator, v1.01, IBM, Almaden Research Center (1996). Available online at: www.almaden.ibm.com/st/msim. Accessed 25 June 2013

  38. S.H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Chemistry and Engineering (Perseus Books, Reading, 1994)

    Google Scholar 

  39. R.F. Ludlow, S. Otto, Chem. Soc. Rev. 37, 101–108 (2008)

    Article  CAS  Google Scholar 

  40. M. Kindermann, I. Stahl, M. Reimold, W.M. Pankau, G. von Kiedrowski, Angew. Chem. Int. Ed. Engl. 44, 6750–6755 (2005)

    Article  CAS  Google Scholar 

  41. P.M. Schwartz, D.M. Lepore, C. Barratt, Int. J. Chem. 4, 9–15 (2012)

    Article  CAS  Google Scholar 

  42. D.M. Lepore, C. Barratt, P.M. Schwartz, J. Math. Chem. 49, 356–370 (2011)

    Article  CAS  Google Scholar 

  43. D.C. Osipovitch, C. Barratt, P.M. Schwartz, New J. Chem. 33, 2022–2027 (2009)

    Article  CAS  Google Scholar 

  44. J.R. Islas, D. Lavabre, J.-M. Grevy, R.H. Lamoneda, H.R. Cabrera, J.-C. Micheau, T. Buhse, Proc. Natl Acad. Sci. USA 102, 13743–13748 (2005)

    Article  CAS  Google Scholar 

  45. M. Mauksch, S.B. Tsogoeva, Biomimetic Org. Synth. 23, 823–845 (2011). doi:10.1002/9783527634606.ch23

    Article  Google Scholar 

  46. M.H. Engel, S.A. Macko, Precambrian Res. 106, 35–45 (2001)

    Article  CAS  Google Scholar 

  47. S. Pizzarello, Acc. Chem. Res. 39, 231–235 (2006)

    Article  CAS  Google Scholar 

  48. T. Kawasaki, K. Suzuki, M. Shimizu, K. Ishikawa, K. Soai, Chirality 18, 479–482 (2006)

    Article  CAS  Google Scholar 

  49. T. Kawasaki, K. Soai, J. Fluorine Chem. 131, 525–534 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CB and PMS gratefully acknowledge funding through the Connecticut Space Grant Consortium and the University of New Haven Faculty Research Support. BNM and JMK thank the University for supporting undergraduate summer fellowships and NASA for a CT Space Grant Fellowship (BNM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline M. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morneau, B.N., Kubala, J.M., Barratt, C. et al. Analysis of a chemical model system leading to chiral symmetry breaking: Implications for the evolution of homochirality. J Math Chem 52, 268–282 (2014). https://doi.org/10.1007/s10910-013-0261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0261-5

Keywords

Navigation