Skip to main content
Log in

Chiral symmetry breaking: Frank model for the evolution of homochirality described by population dynamics

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The intrinsic asymmetric nature of biological compounds, fundamental for the origin of Life on Earth, and the explanation and description of emergence and evolution of homochirality of predominant species represent an important and intriguing challenge for many scientists (in 2005, the editors of Science magazine included the problem among the 125 most important scientific puzzles). Autocatalytic reactions, where a reaction product catalyzes the production of itself and suppresses its enantiomer, can represent a mechanism for the evolution of homochirality, and the model proposed by Frank (Biochim Biophys Acta 11:459–463, 1953) still represents a milestone in the field. Anyway, with due distinctions, the basic idea underlying the Frank model could be mathematically traced back to the Lotka–Volterra equations (also commonly known as the predator–prey equations), describing biological species competition: then, in principle, this inscribes the problem basically within that branch of Mathematics called population dynamics. In the present work, alternatively to the deterministic or stochastic numerical solutions of Frank’s equations describing the evolution of a system towards the homochirality, I tried to describe the “proliferation” of the chiral species by the conceptual methods and tools often adopted in biomathematics (study of geometric progressions and so on). Interestingly, this approach led to solutions about the time-dependent populations of the two enantiomers of in a simple closed form (of course, our results have been quantitatively compared with results obtained from deterministic and stochastic models). Besides this, the length of the time required for the complete evolution of the system to homochirality (also called, sometimes in literature, relaxation time) as a function of the total amount of molecules and of the initial excess of one enantiomer has been explicitly obtained, and, mathematically, it resulted to be exactly twice the value of the time where is located the point of inflection of the curves describing the dynamics of the evolution of two enantiomers. Finally, an explicit realistic estimation of these times, compared with experimental and theoretical data available in literature, is given in the work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Caglioti, K. Micskei, G. Pályi, Chirality 23, 65–68 (2011)

    Article  CAS  Google Scholar 

  2. P. Cintas (ed.), Biochirality, Origins, Evolution and Molecular Recognition, Topics in Current Chemistry (Springer, Berlin, 2013)

    Google Scholar 

  3. M. Maioli, K. Micskei, L. Caglioti, C. Zucchi, G. Pályi, J. Math. Chem. 43, 1505–1515 (2008)

    Article  CAS  Google Scholar 

  4. B. Barabás, J. Tóth, G. Pályi, J. Math. Chem. 48, 457–489 (2010)

    Article  Google Scholar 

  5. T. Buhse, J.-M. Cruz, M. Noble-Terán, J.-C. Micheau, First European Asymetry Symposium, Mar 2018, Nice, France, hal-01828235. https://hal.archives-ouvertes.fr/hal-01828235

  6. F.C. Frank, Biochim. Biophys. Acta 11, 459–463 (1953)

    Article  CAS  Google Scholar 

  7. D.G. Blackmond, Angew. Chem. Int. Ed. 48, 2648–2654 (2009)

    Article  CAS  Google Scholar 

  8. D.G. Blackmond, Cold Spring Harb. Perspect. Biol. 2, a002147 (2010)

    Article  Google Scholar 

  9. D.G. Blackmond, Phil. Trans. R. Soc. B 366, 2878–2884 (2011)

    Article  CAS  Google Scholar 

  10. J.E. Hein, D. Gherase, D.G. Blackmond, Top. Curr. Chem. 333, 83–108 (2013)

    Article  CAS  Google Scholar 

  11. D.G. Blackmond, Cold Spring Harb. Perspect. Biol. 11, a032540 (2019)

    Article  CAS  Google Scholar 

  12. D.G. Blackmond, Chem. Rev. 120, 4831–4847 (2020)

    Article  CAS  Google Scholar 

  13. A.J. Bissette, S.P. Fletcher, Angew. Chem. Int. Ed. 52, 12800–12826 (2013)

    Article  CAS  Google Scholar 

  14. Y. Saito, H. Hyuga, Rev. Mod. Phys. 85, 603–621 (2013)

    Article  CAS  Google Scholar 

  15. Y. Saito, H. Hyuga, J. Phys. Soc. Jpn. 79, 083002-1-083002–4 (2010)

    Google Scholar 

  16. F. Jafarpour, T. Biancalani, N. Goldenfeld, Phys. Rev. E 95, 032407-1-032407–18 (2017)

    Article  Google Scholar 

  17. L. Silva-Dias, A. Lopez-Castillo, Phys. Chem. Chem. Phys. 19, 29424–29428 (2017)

    Article  CAS  Google Scholar 

  18. G. Lente, Symmetry 2, 767–798 (2010)

    Article  CAS  Google Scholar 

  19. Mathematica® is a trademark of Wolfram Research, Inc.

  20. C.C. Blanco, I.A. Chen, Connections between mathematical models of prebiotic evolution and homochirality, in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids. Nucleic Acids and Molecular Biology, vol. 35, ed. by C. Menor-Salván (Springer, Cham, 2018), p. 2018

    Google Scholar 

  21. M. Iannelli, A. Pugliese, An Introduction to Mathematical Population Dynamics (Springer, Heidelberg, 2014)

    Book  Google Scholar 

  22. J.M. Ribó, D. Hochberg, Chirality 27, 722–727 (2015)

    Article  Google Scholar 

  23. C. Tschierske, C. Dressel, Symmetry 12, 1098-1-1098–30 (2020)

    Article  Google Scholar 

  24. Y. Saito, H. Hyuga, J. Phys. Soc. Jpn. 73, 33–35 (2004)

    Article  CAS  Google Scholar 

  25. C. Viedma, Phys. Rev. Lett. 94, 065504-1-065504–4 (2005)

    Article  Google Scholar 

  26. K. Micskei, G. Rábai, E. Gál, L. Caglioti, G. Pályi, J. Phys. Chem. B 112, 9196–9200 (2008)

    Article  CAS  Google Scholar 

  27. D. Kondepudi, Z. Mundy, Symmetry 12, 769-1-769–13 (2020)

    Article  Google Scholar 

  28. T. Buhse, J.-M. Cruz, M.E. Noble-Terán, D. Hochberg, J.M. Ribo, J. Crusats, J.C. Micheau, Chem. Rev. 121, 2147–2229 (2021)

    Article  CAS  Google Scholar 

  29. D. Lavabre, J.C. Micheau, J.R. Islas, T. Buhse, Kinetic insight into specific features of the autocatalytic Soai reaction, in Amplification of Chirality. Topics in Current Chemistry, vol. 284, ed. by K. Soai (Springer, Berlin, 2007)

    Google Scholar 

  30. K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 378, 767–768 (1995)

    Article  CAS  Google Scholar 

  31. K. Soai, T. Kawasaki, A. Matsumoto, Acc. Chem. Res. 47, 3643–3654 (2014)

    Article  CAS  Google Scholar 

  32. I. Sato, D. Omiya, K. Tsukiyama, Y. Ogi, K. Soai, Tetrahedron Asymmetry 12, 1965–1969 (2001)

    Article  CAS  Google Scholar 

  33. I. Sato, D. Omiya, H. Igarashi, K. Kato, Y. Ogi, K. Tsukiyama, K. Soai, Tetrahedron Asymmetry 14, 975–979 (2003)

    Article  CAS  Google Scholar 

  34. I. Sato, H. Urabe, S. Ishiguro, T. Shibata, K. Soai, Angew. Chem. Int. Ed. 115, 329–331 (2003)

    Article  Google Scholar 

  35. K. Soai, T. Kawasaki, Asymmetric autocatalysis with amplification of chirality, in Amplification of Chirality. Topics in Current Chemistry, vol. 284, ed. by K. Soai (Springer, Berlin, 2007)

    Google Scholar 

  36. K. Soai, T. Kawasaki, A. Matsumoto, Tetrahedron 74, 1973–1990 (2018)

    Article  CAS  Google Scholar 

  37. K. Soai, Proc. Jpn. Acad. Ser. B 95, 89–110 (2019)

    Article  CAS  Google Scholar 

  38. K. Soai, T. Kawasaki, A. Matsumoto, Symmetry 11, 694-1-694–20 (2019)

    Article  Google Scholar 

  39. G. Laurent, D. Lacoste, P. Gaspard, Proc. Natl. Acad. Sci. U. S. A. 118, e2012741118 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Author thanks University of Calabria for financial support. The student Chiara Corapi is also kindly acknowledged for her starting work on the project, during her Third Year Project under the supervision of Prof. G. Celebre, at the University of Calabria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Celebre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celebre, G. Chiral symmetry breaking: Frank model for the evolution of homochirality described by population dynamics. J Math Chem 60, 681–694 (2022). https://doi.org/10.1007/s10910-022-01329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-022-01329-8

Keywords

Navigation