Skip to main content
Log in

Boundedness of trajectories for weakly reversible, single linkage class reaction systems

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This paper is concerned with the dynamical properties of deterministically modeled chemical reaction systems with mass-action kinetics. Such models are ubiquitously found in chemistry, population biology, and the burgeoning field of systems biology. A basic question, whose answer remains largely unknown, is the following: for which network structures do trajectories of mass-action systems remain bounded in time? In this paper, we conjecture that the result holds when the reaction network is weakly reversible, and prove this conjecture in the case when the reaction network consists of a single linkage class, or connected component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson D.F.: A proof of the global attractor conjecture in the single linkage class case. SIAM J. Appl. Math. 71(4), 1487–1508 (2011)

    Article  Google Scholar 

  2. Anderson D.F., Shiu A.: The dynamics of weakly reversible population processes near facets. SIAM J. Appl. Math. 70(6), 1840–1858 (2010)

    Article  Google Scholar 

  3. D. Angeli, P. De Leenheer, E.D. Sontag, A Petri net approach to the study of persistence in chemical reaction networks, in Biology and Control Theory: Current Challenges, Lecture Notes in Control and Inform Science vol. 357, ed. by I. Queinnec, S. Tarbouriech, G. Garcia, S.-I. Niculescu (Springer, Berlin, 2007), pp. 181–216

  4. Angeli D., De Leenheer P., Sontag E.: A petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210(2), 598–618 (2007)

    Article  CAS  Google Scholar 

  5. Angeli D., De Leenheer P., Sontag E.: Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws. SIAM Appl. Math. 71(1), 128–146 (2011)

    Article  CAS  Google Scholar 

  6. Craciun G., Dickenstein A., Shiu A., Sturmfels B.: Toric dynamical systems. J. Symb. Comp. 44, 1551–1565 (2009)

    Article  Google Scholar 

  7. G. Craciun, F. Nazarov, C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems, submitted, available at arXiv:1010.3050v1

  8. M. Feinberg, Lectures on chemical reaction networks, Delivered at Math. Res. Cent., U. Wisc.-Mad. (1979), Available for download at http://www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks

  9. Feinberg M.: Chemical reaction network structure and the stability of complex isothermal reactors - I. the deficiency zero and deficiency one theorems, review article 25. Chem. Eng. Sci. 42, 2229–2268 (1987)

    Article  CAS  Google Scholar 

  10. Feinberg M., Horn F.J.M.: Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chem. Eng. Sci. 29, 775–787 (1974)

    Article  CAS  Google Scholar 

  11. J. Gunawardena, Chemical reaction network theory for in-silico biologists (2003), Available for download at http://vcp.med.harvard.edu/papers/crnt.pdf

  12. Horn F.J.M.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Rat. Mech. Anal. 49(3), 172–186 (1972)

    Article  Google Scholar 

  13. Horn F.J.M.: The dynamics of open reaction systems. SIAM-AMS Proc. VIII, 125–137 (1974)

    Google Scholar 

  14. Horn F.J.M., Jackson R.: General mass action kinetics. Arch. Rat. Mech. Anal. 47, 81–116 (1972)

    Article  Google Scholar 

  15. Siegel D., Johnston M.D.: A stratum approach to global stability of complex balanced systems. Dyn. Syst. 26(2), 125–146 (2011)

    Article  Google Scholar 

  16. M.D. Johnston, D. Siegel, Weak dynamic non-emptiability and persistence of chemical kinetic systems, available on arxiv:1009.0720

  17. C. Pantea, On the persistence and global stability of mass-action systems, submitted

  18. Sontag E.D.: Structure and stability of certain chemical networks and applications to the kinetic proofreading of t-cell receptor signal transduction. IEEE Trans. Auto. Cont. 46(7), 1028–1047 (2001)

    Article  Google Scholar 

  19. Stiemke E.: Über positive Lösungen homogener linearer Gleichungen. Mathematische Annalen 76, 340–342 (1915)

    Article  Google Scholar 

  20. Takeuchi Y.: Global Dynamical Properties of Lotka-Volterra Systems. World Scientific. Publications., NJ (1996)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Anderson.

Additional information

Grant support from NSF grant DMS-1009275.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, D.F. Boundedness of trajectories for weakly reversible, single linkage class reaction systems. J Math Chem 49, 2275–2290 (2011). https://doi.org/10.1007/s10910-011-9886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9886-4

Keywords

Navigation