Skip to main content
Log in

Endotactic and strongly endotactic networks with infinitely many positive steady states

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The dynamics exhibited by reaction networks is often a manifestation of their steady states. We show that there exists endotactic and strongly endotactic dynamical systems that are not weakly reversible and possess a family of infinitely many positive steady states. In addition, we prove for some of these systems that there exist no weakly reversible mass-action systems that are dynamically equivalent to mass-action systems generated by these networks. This extends a result by Boros, Craciun and Yu [1], who proved the existence of weakly reversible dynamical systems with infinitely many steady states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. B. Boros, G. Craciun, P. Yu, Weakly reversible mass-action systems with infinitely many positive steady states. SIAM J. Appl. Math. 80(4), 1936–1946 (2020)

    Article  Google Scholar 

  2. G. Craciun, F. Nazarov, C. Pantea, Persistence and permanence of mass-action and power-law dynamical systems. SIAM J. Appl. Math. 73(1), 305–329 (2013)

    Article  Google Scholar 

  3. M. Gopalkrishnan, E. Miller, A. Shiu, A geometric approach to the global attractor conjecture. SIAM J. Appl. Dyn. Syst. 13(2), 758–797 (2014)

    Article  Google Scholar 

  4. Craciun, G.: Toric differential inclusions and a proof of the global attractor conjecture. arXiv preprint arXiv:1501.02860 (2015)

  5. D. Bates, P. Breiding, T. Chen, J. Hauenstein, A. Leykin, F. Sottile, Numerical nonlinear algebra, arXiv preprint arXiv:2302.08585 (2023)

  6. P. Breiding, S. Timme, Homotopycontinuation. jl: A package for homotopy continuation in julia, Mathematical Software-ICMS, 6th International Conference, South Bend, IN, USA, July 24–27, 2018, Proceedings 6. Springer 2018, 458–465 (2018)

  7. J. Collins, J. Hauenstein, A singular value homotopy for finding critical parameter values. Appl. Numer. Math. 161, 233–243 (2021)

    Article  Google Scholar 

  8. J. Deng, C. Jones, M. Feinberg, A. Nachman, On the steady states of weakly reversible chemical reaction networks, arXiv preprint arXiv:1111.2386 (2011)

  9. B. Boros, Existence of positive steady states for weakly reversible mass-action systems. SIAM J. Math. Anal. 51(1), 435–449 (2019)

    Article  Google Scholar 

  10. E. Feliu, O. Henriksson, B. Pascual-Escudero, Dimension and degeneracy of solutions of parametric polynomial systems arising from reaction networks, arXiv preprint arXiv:2304.02302 (2023)

  11. F. Horn, R. Jackson, General mass action kinetics. Arch. Ration. Mech. Anal. 47(2), 81–116 (1972)

    Article  Google Scholar 

  12. F. Horn, Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal. 49(3), 172–186 (1972)

    Article  Google Scholar 

  13. M. Feinberg, Lectures on chemical reaction networks (University of Wisconsin, Notes of lectures given at the Mathematics Research Center, 1979), p.49

  14. P. Mezey, From reaction path to reaction mechanism: Fundamental groups and symmetry rules, The reaction path in chemistry: current approaches and perspectives, Springer, (1995), pp. 11–38

  15. P. Mezey, The topology of energy hypersurfaces v. potential-defying chemical species: a global analysis of vibrational stabilization and destabilization on potential energy hypersurfaces. Theor. Chim. Acta 67, 115–136 (1985)

    Article  CAS  Google Scholar 

  16. P. Mezey, Quantum chemical reaction networks, reaction graphs and the structure of potential energy hypersurfaces. Theor. Chim. Acta 60, 409–428 (1982)

    Article  CAS  Google Scholar 

  17. P. Mezey, Reaction topology of excited state potential energy hypersurfaces. Can. J. Chem. 61(5), 956–961 (1983)

    Article  CAS  Google Scholar 

  18. P. Mezey, Potential energy hypersurfaces (1987)

  19. A. von Lilienfeld, K. Müller, A. Tkatchenko, Exploring chemical compound space with quantum-based machine learning. Nat. Rev. Chem. 4(7), 347–358 (2020)

    Article  Google Scholar 

  20. M. Bragato, G. von Rudorff, A. von Lilienfeld, Data enhanced Hammett-equation: reaction barriers in chemical space. Chem. Sci. 11(43), 11859–11868 (2020)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. K. Chang, S. Fias, R. Ramakrishnan, O.A. Von Lilienfeld, Fast and accurate predictions of covalent bonds in chemical space. J. Chem. Phys. 144(17), 174 (2016)

    Article  Google Scholar 

  22. G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions. SIAM J. Appl. Algebra Geom. 3(1), 87–106 (2019)

    Article  Google Scholar 

  23. G. Craciun, A. Deshpande, Endotactic networks and toric differential inclusions. SIAM J. Appl. Dyn. Syst. 19(3), 1798–1822 (2020)

    Article  Google Scholar 

  24. C. Craciun, A. Deshpande, J. Yeon, Quasi-toric differential inclusions. Discrete Contin. Dyn. Syst. B 26(5), 2343–2359 (2021)

    Google Scholar 

  25. J. Gunawardena, Chemical reaction network theory for in-silico biologists, Notes available for download at http://vcp. med. harvard. edu/papers/crnt. pdf (2003)

  26. D. Anderson, J. Brunner, G. Craciun, M. Johnston, On classes of reaction networks and their associated polynomial dynamical systems. J. Math. Chem. 58(9), 1895–1925 (2020)

    Article  CAS  Google Scholar 

  27. C. Guldberg, P. Waage, Studies concerning affinity. CM Forhandlinger: Videnskabs-Selskabet I Christiana 35(1864), 1864 (1864)

    Google Scholar 

  28. M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors—I. the deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987)

    Article  CAS  Google Scholar 

  29. P. Yu, G. Craciun, Mathematical analysis of chemical reaction systems. Isr. J. Chem. 58(6–7), 733–741 (2018)

    Article  CAS  Google Scholar 

  30. L. Adleman, M. Gopalkrishnan, M. Huang, P. Moisset, D. Reishus, On the mathematics of the law of mass action, A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, Springer, 2014, pp. 3–46

  31. D. Angeli, P. De Leenheer, E. Sontag, A petri net approach to persistence analysis in chemical reaction networks (Current Challenges, Biology and Control Theory, 2007), pp.181–216

  32. M. Ali Al-Radhawi, D. Angeli, E. Sontag, A computational framework for a lyapunov-enabled analysis of biochemical reaction networks. PLoS Comput. Biol. 16(2), e1007681 (2020)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. D. Angeli, P. De Leenheer, E. Sontag, A petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210(2), 598–618 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. M. Marcondes de Freitas, E. Feliu, C. Wiuf, Intermediates, catalysts, persistence, and boundary steady states. J. Math. Biol. 74, 887–932 (2017)

    Article  PubMed  Google Scholar 

  35. A. Deshpande, M. Gopalkrishnan, Autocatalysis in reaction networks. Bull. Math. Biol. 76(10), 2570–2595 (2014)

    Article  PubMed  Google Scholar 

  36. C. Pantea, On the persistence and global stability of mass-action systems. SIAM J. Math. Anal. 44(3), 1636–1673 (2012)

    Article  Google Scholar 

  37. D. Anderson, A proof of the global attractor conjecture in the single linkage class case. SIAM J. Appl. Math. 71(4), 1487–1508 (2011)

    Article  CAS  Google Scholar 

  38. Y. Ding, A. Deshpande, G. Craciun, Minimal invariant regions and minimal globally attracting regions for variable-k reaction systems. Discrete Contin. Dyn. Syst. Ser. B 28(3), 696–1718 (2023)

    Article  Google Scholar 

  39. Y. Ding, A. Deshpande, G. Craciun, Minimal invariant regions and minimal globally attracting regions for toric differential inclusions. Adv. Appl. Math. 136, 102307 (2022)

    Article  Google Scholar 

  40. G. Craciun, C. Pantea, Identifiability of chemical reaction networks. J. Math. Chem. 44(1), 244–259 (2008)

    Article  CAS  Google Scholar 

  41. G. Craciun, J. Jin, P. Yu, An efficient characterization of complex-balanced, detailed-balanced, and weakly reversible systems. SIAM J. Appl. Math. 80(1), 183–205 (2020)

    Article  Google Scholar 

  42. A. Deshpande, Source-only realizations, weakly reversible deficiency one networks, and dynamical equivalence. SIAM J. Appl. Dyn. Syst. 22(2), 1502–1521 (2023)

    Article  Google Scholar 

  43. G. Craciun, A. Deshpande, J. Jin, Weakly reversible single linkage class realizations of polynomial dynamical systems: an algorithmic perspective. Discrete Contin. Dyn. Syst. Ser. B 62, 476–501 (2023)

    Google Scholar 

  44. G. Craciun, A. Deshpande, J. Jin, Weakly reversible single linkage class realizations of polynomial dynamical systems: an algorithmic perspective. J. Math. Chem. 62(2), 476–501 (2023)

    Article  Google Scholar 

  45. B. Sturmfels, Grobner Bases and Convex Polytopes, vol. 8 (American Mathematical Society, Providence, 1996)

    Google Scholar 

  46. G. Craciun, A. Deshpande, J. Jin, Weakly reversible single linkage class realizations of polynomial dynamical systems: an algorithmic perspective. J. Math. Chem. 62(2), 476–501 (2024)

    Article  CAS  Google Scholar 

  47. P. Donnell, M. Banaji, A. Marginean, C. Pantea, CoNtRol: an open source framework for the analysis of chemical reaction networks. Bioinformatics 30(11), 1633–1634 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

AD would like to acknowledge support from SERB Start-up Research Grant SRG/2022/001404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Deshpande.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare which are relevant to the content of this article.

Ethical approval

This material is the authors’ own original work and has not been previously published elsewhere.

Data availability

No datasets were created during the preparation of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothari, S., Deshpande, A. Endotactic and strongly endotactic networks with infinitely many positive steady states. J Math Chem (2024). https://doi.org/10.1007/s10910-024-01617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10910-024-01617-5

Keywords

Navigation