Skip to main content
Log in

Use of Cartesian coordinates in evaluation of multicenter multielectron integrals over Slater type orbitals and their derivatives

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Using addition theorems for interaction potentials and Slater type orbitals (STOs) obtained by the author, and the Cartesian expressions through the binomial coefficients for complex and real regular solid spherical harmonics (RSSH) and their derivatives presented in this study, the series expansion formulas for multicenter multielectron integrals of arbitrary Coulomb and Yukawa like central and noncentral interaction potentials and their first and second derivatives in Cartesian coordinates were established. These relations are useful for the study of electronic structure and electron-nuclei interaction properties of atoms, molecules, and solids by Hartree–Fock–Roothaan and correlated theories. The formulas obtained are valid for arbitrary principal quantum numbers, screening constants and locations of STOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kato T. (1957). Commun. Pure Appl. Math. 10:151

    Article  Google Scholar 

  2. Agmon S. (1982) Lectures on Exponential Decay of Solution of Second-Order Elliptic Equations: Bound on Eigenfunctions of N-Body Schrödinger Operators. Princeton University Press, Princeton, NJ

    Google Scholar 

  3. Etemadi B., Jones H.W. (1993). Int. J. Quantum Chem. Symp. 27:755

    Article  CAS  Google Scholar 

  4. Balotin A.B., Kuzmenko V.V., Rossikhin V.V., Vohronkow E.O. (1994). J. Mol. Struct. (Thoechem) 117:233

    Article  Google Scholar 

  5. Rico J.F., Lopez R., Ema I., Ramirez G. (2005). J. Comput. Chem. 26:846

    Article  CAS  Google Scholar 

  6. Bouferguene A. (2005). J. Phys. A, Math. Gen. 38:2899

    Article  Google Scholar 

  7. C.A. Weatherford and H.W. Jones (eds.), ETO Multicenter Integrals (Reidel, Dordrecht, 1982).

  8. Coolidge A.S. (1932). Phys. Rev. 42:189

    Article  CAS  Google Scholar 

  9. Barnett M.P., Coulson C.A. (1951). Philos. Trans. R. Soc. Lond. Ser. A 243:221

    Article  Google Scholar 

  10. Löwdin P.O. (1947). Arkiv. Mat. Fys. Astr. 35A:9

    Google Scholar 

  11. Löwdin P.O. (1956). Adv. Phys. 5:96

    Article  Google Scholar 

  12. Steinborn E.O., Filter E. (1975). Theor. Chim. Acta 38:247

    Article  CAS  Google Scholar 

  13. Steinborn E.O., Filter E. (1975). Theor. Chim. Acta 38:261

    Article  CAS  Google Scholar 

  14. Steinborn E.O., Filter E. (1975). Theor. Chim. Acta 38:273

    Article  CAS  Google Scholar 

  15. Steinborn E.O., Filter E. (1975). Int. J. Quantum Chem. Symp. 9:435

    Article  CAS  Google Scholar 

  16. Guseinov I.I. (1976). J. Chem. Phys. 65:4718

    Article  CAS  Google Scholar 

  17. Guseinov I.I. (1978). J. Chem. Phys. 69:4990

    Article  CAS  Google Scholar 

  18. Guseinov I.I. (1980). Phys. Rev. A 22:369

    Article  CAS  Google Scholar 

  19. Filter E., Steinborn E.O. (1980). J. Math. Phys. 21:2725

    Article  Google Scholar 

  20. Steinborn E.O., Filter E. (1980). Int. J. Quantum Chem. 18:219

    Article  CAS  Google Scholar 

  21. Weniger E.J. (1985). J. Math. Phys. 26:276

    Article  Google Scholar 

  22. Guseinov I.I. (1985). Phys. Rev. A 31:2851

    Article  CAS  Google Scholar 

  23. Guseinov I.I. (1988). Phys. Rev. A 37:2314

    Article  CAS  Google Scholar 

  24. Guseinov I.I. (2001). Int. J. Quantum Chem. 81:126

    Article  CAS  Google Scholar 

  25. Hylleraas E. (1929). Z. Phys. 54:347

    Article  CAS  Google Scholar 

  26. Shull H., Löwdin P.O. (1955). J. Chem. Phys. 23:1392

    Google Scholar 

  27. Löwdin P.O., Shull H. (1956). Phys. Rev. A, 101:1730

    Article  Google Scholar 

  28. Magnus W., Oberhettinger F., Soni R.P. (1966) Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, New York

    Google Scholar 

  29. Guseinov I.I. (2002). Int. J. Quantum Chem. 90:114

    Article  CAS  Google Scholar 

  30. Kaijser P. Jr., Smith V.H. (1977). Adv. Quantum Chem. 10:37

    Article  CAS  Google Scholar 

  31. Guseinov I.I. (2003). J. Mol. Model. 9, 135

    Article  CAS  Google Scholar 

  32. Guseinov I.I. (2003). J. Mol. Model. 9:190

    Article  CAS  Google Scholar 

  33. Guseinov I.I. (2004). J. Mol. Model. 10:212

    Article  CAS  Google Scholar 

  34. Guseinov I.I. (2004). J. Phys. A, Math. Gen. 37:957

    Article  CAS  Google Scholar 

  35. Guseinov I.I. (2004). J. Chem. Phys. 120:9454

    Article  CAS  Google Scholar 

  36. Guseinov I.I., Mamedov B.A. (2004). J. Chem. Phys. 121:1649

    Article  CAS  Google Scholar 

  37. Guseinov I.I. (2004). Can. J. Phys. 82:819

    Article  CAS  Google Scholar 

  38. Guseinov I.I., Mamedov B.A. (2004). J. Math. Chem. 36:113

    Article  CAS  Google Scholar 

  39. Guseinov I.I. (2005). Chem. Phys. 309:209

    Article  CAS  Google Scholar 

  40. Guseinov I.I. (2005). J. Mol. Struct. (Theochem) 719:53

    Article  CAS  Google Scholar 

  41. Guseinov I.I. (2005). Bull. Chem. Soc. Jpn. 78:611

    Article  CAS  Google Scholar 

  42. Guseinov I.I. (1995). J. Mol. Struct. (Theochem) 335:17

    Article  Google Scholar 

  43. Bethe H.A., Salpeter E.E. (1957) Quantum Mechanics of One and Two Electron Atoms. Springer-Verlag, Berlin

    Google Scholar 

  44. Varshalovich D.A., Moskalev A.N., Khersonskii V.K. (1988) Quantum Theory of Angular Momentum. World Scientific, Singapore

    Google Scholar 

  45. Guseinov I.I., Mamedov B.A. (2002). Theor. Chem. Acc. 108:21

    CAS  Google Scholar 

  46. Guseinov I.I., Mamedov B.A. (2005). J. Math. Chem. 37:353

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Guseinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guseinov, I.I. Use of Cartesian coordinates in evaluation of multicenter multielectron integrals over Slater type orbitals and their derivatives. J Math Chem 43, 427–434 (2008). https://doi.org/10.1007/s10910-006-9205-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9205-7

Keywords

Navigation