Skip to main content
Log in

Developments in molecular electronic structure evaluation based on the self-frictional field with Slater-type orbitals

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Molecular electronic structure evaluations are investigated here using complete orthonormal sets of Guseinov \(\psi^{\left( \alpha \right)}\) exponential-type orbitals (\(\psi^{\left( \alpha \right)}\) ETOs), where \(\alpha = 1,0, - 1, - 2, \ldots\) is the self-friction quantum number. Using two-center overlap integrals over Slater-type orbitals (STOs) with same screening constants, all the one- and two-electron multicenter integrals are reformulated with the help of the Löwdin alpha radial function. The proposed formula yields useful definitions that enable us to evaluate the multicenter integrals and related combined Hartree–Fock–Roothaan equations over STOs. In terms of the self-frictional field effect, the effectiveness of the method is demonstrated using the BH3 molecule as an example application. The results of the calculation are validated using existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J C Slater Quantum Theory of Atomic Structure (New York: Mc Graw-Hill) vol 2, p 267 (1960)

    Google Scholar 

  2. A Szabo and N S Ostlund Modern Quantum Chemistry (New York: McGraw-Hill) p 185 (1989)

    Google Scholar 

  3. I N Levine Quantum Chemistry (New York: Prentice Hall) p 245 (2000)

    Google Scholar 

  4. I P Grant Relativistic Quantum Theory of Atoms and Molecules (New York: Springer and Business Media) p 322 (2007)

    Book  Google Scholar 

  5. P O Löwdin Adv. Phys. 5 96 (1956)

    Article  Google Scholar 

  6. R A Friesner PNAS 102 6648 (2005)

    Article  ADS  Google Scholar 

  7. R F W Bader J. Phys. Chem. 115 12667 (2011)

    Article  Google Scholar 

  8. R M Pitzer J. Chem. Theory Comput. 7 2346 (2011)

    Article  Google Scholar 

  9. Y B Malykhanov, S V Evseev and I N Eryomkin J. Appl. Spectr. 77 741 (2011)

    Article  ADS  Google Scholar 

  10. I N Eryomkin and Y B Malykhanov J. Appl. Spectr. 78 301 (2011)

    Article  ADS  Google Scholar 

  11. Y B Malykhanov and R N Pravosudov J. Appl. Spectr. 67 1 (2000)

    Article  ADS  Google Scholar 

  12. K Ruedenberg, C C Roothaan and W Jaunzemis J. Chem. Phys. 24 201 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  13. M Lesiuk and R Moszynski Phys. Rev. E 90 063319 (2014)

    Article  ADS  Google Scholar 

  14. I I Guseinov J. Mol. Struct. (Theochem) 422 69 (1998); 422 75 (1998)

  15. I I Guseinov J. Mol. Struct. (Theochem) 417 117 (1997)

    Article  Google Scholar 

  16. L Berlu and H Safouhi J. Phys. A 36 11267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. L Berlu, H Safouhi and P. Hoggan Int. J. Quantum Chem. 99 221 (2004)

    Article  Google Scholar 

  18. T Ozdogan and M Orbay Math. Notes 82 141 (2006)

    Article  Google Scholar 

  19. B A Mamedov, M Kara and M Orbay Chin. J. Phys. 40 283 (2002)

    Google Scholar 

  20. M Lesiuk and R Moszynski Phys. Rev. E 90 063318 (2014)

    Article  ADS  Google Scholar 

  21. D Petrov Physica B Cond. Matter 474 5 (2015)

    Article  ADS  Google Scholar 

  22. D Petrov Physica B Cond. Matter 489 63 (2016)

    Article  ADS  Google Scholar 

  23. J E Avery and J S Avery J. Math. Chem. 52 301 (2014)

    Article  MathSciNet  Google Scholar 

  24. D Calderini, S Cavalli, C Coletti, G Grossi and V Aquilanti J. Chem. Sci. 124 187 (2012)

    Article  Google Scholar 

  25. C Coletti, D Calderini and V Aquilanti Adv. Quantum Chem. 67 73 (2013)

    Article  Google Scholar 

  26. P E Hoggan M B Ruiz and T Özdoğan Quantum Frontiers of Atoms and Molecules (New York: Publishing Inc.) p 61 (2011)

    Google Scholar 

  27. I I Guseinov J. Math. Chem. 42 415 (2006)

    Article  MathSciNet  Google Scholar 

  28. H A Lorentz The Theory of Electrons (New York: Pergamon) p 276 (1953)

    Google Scholar 

  29. W Heitler The Quantum Theory of Radiation (London: Oxford University) p 57 (1950)

    MATH  Google Scholar 

  30. L D Landau and E M Lifshitz The Classical Theory of Fields (New York: Pergamon) p 132 (1987)

    Google Scholar 

  31. I I Guseinov AIP Conf. Proceed. 899 65 (2007)

    Article  ADS  Google Scholar 

  32. I I Guseinov Bull. Chem. Soc. Jpn. 85 1306 (2012)

    Article  Google Scholar 

  33. I I Guseinov Few-Body Syst. 54 1773 (2013)

    Article  ADS  Google Scholar 

  34. B A Mamedov Int. J. Quantum Chem. 114 361 (2014)

    Article  Google Scholar 

  35. H W Jones Int. J. Quantum Chem. Symp. 15 287 (1981)

    Google Scholar 

  36. H W Jones Int. J. Quantum Chem. 18 709 (1980)

    Article  Google Scholar 

  37. H W Jones Int. J. Quantum Chem. 19 567 (1981)

    Article  Google Scholar 

  38. H W Jones Int. J. Quantum Chem. 21 1079 (1982)

    Article  Google Scholar 

  39. H W Jones Int. J. Quantum Chem. 23 953 (1983)

    Article  Google Scholar 

  40. H W Jones Int. J. Quantum Chem. 29 177 (1986)

    Article  Google Scholar 

  41. H W Jones Int. J. Quantum Chem. 41 749 (1992)

    Article  Google Scholar 

  42. H W Jones Int. J. Quantum Chem. 45 (1993)

  43. H W Jones Int. J. Quantum Chem. 61 881 (1997)

    Article  Google Scholar 

  44. H W Jones Phys. Rev. A 30 1 (1984)

    Article  ADS  Google Scholar 

  45. E U Condon and G H Shortley Theory of Atomic Spectra (London: Cambridge University Press) p 285 (1953).

    Google Scholar 

  46. I I Guseinov J. Phys. B 3 1399 (1970)

    Article  ADS  Google Scholar 

  47. I I Guseinov, B A Mamedov and R Aydın J. Mol. Struct. (Theochem) 503 179 (2000)

    Article  Google Scholar 

  48. I I Guseinov Phys. Rev. A 32 1864 (1985)

    Article  ADS  Google Scholar 

  49. I I Guseinov and B A Mamedov J. Mol. Struct. (Theochem) 465 1 (1999)

    Article  Google Scholar 

  50. I I Guseinov J. Mol. Struct. (Theochem) 343 173 (1995)

    Article  Google Scholar 

  51. I I Guseinov J. Math. Chem. 49 1011 (2011)

    Article  MathSciNet  Google Scholar 

  52. I I Guseinov and B A Mamedov Z. Naturforsch. 62a 467 (2007)

    ADS  Google Scholar 

  53. I S Gradshteyn and I M Ryzhik Tables of Integrals, Sums, Series and Products, 4th edn. (New York: Academic Press) p 465 (1980)

    Google Scholar 

  54. B A Mamedov and E Çopuroğlu Acta Phys. Pol. A 119 332 (2011)

    Article  Google Scholar 

  55. E Çopuroğlu and T Mehmetoglu IEEE Trans. Elec. Dev. 62 1580 (2015)

    Article  Google Scholar 

  56. I I Guseinov J. Math. Chem. 42 415 (2007)

    Article  MathSciNet  Google Scholar 

  57. I I Guseinov Int. J. Quantum Chem. 19 149 (1986)

    Google Scholar 

  58. E Clementi and D L Raimondi J. Chem. Phys. 38 2686 (1963)

    Article  ADS  Google Scholar 

  59. V Magnasco and A Rapallo Int. J. Quantum Chem. 79 91 (2000)

    Article  Google Scholar 

  60. W E Palke and W N Lipscomb J. Am. Chem. Soc. 88 2384 (1966)

    Article  Google Scholar 

  61. I. Shavitt International Conference on ETO Multicenter Molecular Integrals (Florida A&M University) (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Mamedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çopuroğlu, E., Mamedov, B.A. Developments in molecular electronic structure evaluation based on the self-frictional field with Slater-type orbitals. Indian J Phys 93, 7–14 (2019). https://doi.org/10.1007/s12648-018-1278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1278-1

Keywords

PACS Nos.

Navigation