Skip to main content
Log in

Addition theorems for Slater-type orbitals and their application to multicenter multielectron integrals of central and noncentral interaction potentials

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

By the use of complete orthonormal sets of ψα-ETOs (α=1, 0, −1, −2, ...) introduced by the author, new addition theorems are derived for STOs and arbitrary central and noncentral interaction potentials (CIPs and NCIPs). The expansion coefficients in these addition theorems are expressed through the Gaunt and Gegenbauer coefficients. Using the addition theorems obtained for STOs and potentials, general formulae in terms of three-center overlap integrals are established for the multicenter t-electron integrals of CIPs and NCIPs that arise in the solution of the N-electron atomic and molecular problem (2≤tN) when a Hylleraas approximation in Hartree–Fock–Roothaan theory is employed. With the help of expansion formulae for translation of STOs, the three-center overlap integrals are expressed through the two-center overlap integrals. The formulae obtained are valid for arbitrary quantum numbers, screening constants and location of orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slater JC (1960) Quantum theory of atomic structure, vol 2. McGraw-Hill, New York, pp 31–50

  2. Hylleraas EA (1928) Z Phys 48:469–494

    CAS  Google Scholar 

  3. (a) Hylleraas EA (1929) Z Phys 54:347–366; (b) Hylleraas EA (1930) Z Phys 60:624–636; (c) Hylleraas EA (1930) Z Phys 65:209–216

    Google Scholar 

  4. Boys SF (1950) Proc R Soc London Ser A 201:125–145

    Google Scholar 

  5. (a) Löwdin PO (1955) Phys Rev 97:1474–1491; (b) Löwdin PO (1960) Rev Mod Phys 32:328–346

    Article  Google Scholar 

  6. Szasz L (1962) Phys Rev 126:169–178

    CAS  Google Scholar 

  7. Sims JS, Hagstrom SA (2002) Int J Quantum Chem 90:1600–1609

    CAS  Google Scholar 

  8. James HM, Coolidge AS (1933) J Chem Phys 1:825–837

    CAS  Google Scholar 

  9. Kolos W, Roothaan CCJ (1960) Rev Mod Phys 32:205–227

    Article  CAS  Google Scholar 

  10. Kolos W, Wolniewicz L (1964) J Chem Phys 41:3663–3672

    CAS  Google Scholar 

  11. Lüchow A, Kleindienst H (1993) Int J Quantum Chem 45:445–470

    Google Scholar 

  12. King FW (1993) J Chem Phys 99:3622–3628

    Article  CAS  Google Scholar 

  13. Porras I, King FW (1994) Phys Rev A 49:1637–1645

    Article  CAS  PubMed  Google Scholar 

  14. Guseinov II (1998) J Mol Struct (Theochem) 422:75–78

    Google Scholar 

  15. Guseinov II (2002) Int J Quantum Chem 90:980–985

    Article  CAS  Google Scholar 

  16. Guseinov II (2002) Int J Quantum Chem 90:114–118

    Article  CAS  Google Scholar 

  17. Guseinov II (2003) J Mol Model, in press

  18. Guseinov II (1970) J Phys B 3:1399–1412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israfil Guseinov.

Appendix

Appendix

As can be seen from Eq. (23), the multicenter t-electron integrals are expressed through the following basic three-center one-electron integrals over STOs:

$$ {\eqalign{ & S^{{aaa...acb}}_{{p_{1} p_{2} p_{3} ...p_{{t - 1}} p_{t} p_{{t + 1}} }} (\zeta _{1} \zeta _{2} \zeta _{3} ...\zeta _{{t - 1}} \zeta _{t} \zeta _{{t + 1}} ) \cr & \,\,\,\,\,\, = ({\sqrt {4\pi } })^{{t - 1}} {\int \matrix{ \chi ^{*}_{{p_{1} }} (\zeta _{1} ,\vec{r}_{a} )\chi _{{p_{2} }} (\zeta _{2} ,\vec{r}_{a} )\chi _{{p_{3} }} (\zeta _{3} ,\vec{r}_{a} )... \hfill \cr \times \chi _{{p_{{t - 1}} }} (\zeta _{{t - 1}} ,\vec{r}_{a} )\chi _{{p_{t} }} (\zeta _{t} ,\vec{r}_{c} )\chi _{{p_{{t + 1}} }} (\zeta _{{t + 1}} ,\vec{r}_{b} ){\mathop{\rm d}\nolimits} v \hfill \cr} } \cr & \,\,\,\,\,\, = ({\sqrt {4\pi } })^{{t - 1}} {\int \matrix{ R_{{n_{1} n_{2} n_{3} ...n_{{t - 1}} }} (\zeta _{1} \zeta _{2} \zeta _{3} ...\zeta _{{t - 1}} ,r_{a} )\Theta _{{l_{1} m_{1} ,l_{2} m_{2} ,l_{3} m_{3} ,...,l_{{t - 1}} m_{{t - 1}} }} \hfill \cr (\theta _{a} \varphi _{a} )\chi _{{p_{t} }} (\zeta _{t} ,\vec{r}_{c} )\chi _{{p_{{t + 1}} }} (\zeta _{{t + 1}} ,\vec{r}_{b} ){\mathop{\rm d}\nolimits} v \hfill \cr} } \cr} } $$
(25)

where

$$ {\eqalign{ & R_{{n_{1} n_{2} n_{3} ...n_{k} }} (\zeta _{1} \zeta _{2} \zeta _{3} ...\zeta _{k} ,r) = R_{{n_{1} }} (\zeta _{1} ,r)R_{{n_{2} }} (\zeta _{2} ,r)R_{{n_{3} }} (\zeta _{3} ,r)...R_{{n_{k} }} (\zeta _{k} ,r) \cr & = {\left[ {{{(2N_{k} )!} \over {(2n_{1} )!(2n_{2} )!(2n_{3} )!...(2n_{k} )!}}} \right]}^{{1/2}} \cr & \times ({\sqrt {2z_{k} } })^{{3(k - 1)}} x^{{n_{1} + 1/2}}_{1} x^{{n_{2} + 1/2}}_{2} x^{{n_{3} + 1/2}}_{3} ...x^{{n_{k} + 1/2}}_{k} R_{{N_{k} }} (z_{k} ,r) \cr} } $$
(26)
$$ {\eqalign{ & N_{k} = n_{1} + n_{2} + n_{3} + ... + n_{k} - k + 1,\;z_{k} = \xi _{1} + \xi _{2} + \xi _{3} + ... + \xi _{k} ,x_{i} = \xi _{i} /z_{k} ,\; \cr & i = 1,2,3,...,k \cr} } $$
(27)

and

$$ {\eqalign{ & \Theta _{{l_{1} m_{1} ,l_{2} m_{2} ,l_{3} m_{3} ,...,l_{k} m_{k} }} (\theta ,\varphi ) = S^{*}_{{l_{1} m_{1} }} (\theta ,\varphi )S^{{}}_{{l_{2} m_{2} }} (\theta ,\varphi )S^{{}}_{{l_{3} m_{3} }} (\theta ,\varphi )...S^{{}}_{{l_{k} m_{k} }} (\theta ,\varphi ) \cr & = {1 \over {({\sqrt {4\pi } })^{{k - 1}} }} \cr & \times {\sum\limits_{L_{2} M_{2} ,L_{3} M_{3} ,...,L_{k} M_{k} } {d^{{L_{2} M_{2} }} (l_{1} m_{1} ,l_{2} m_{2} )d^{{L_{3} M_{3} }} (L_{2} M_{2} ,l_{3} m_{3} )...d^{{L_{k} M_{k} }} (L_{{k - 1}} M_{{k - 1}} ,l_{k} m_{k} )S^{*}_{{L_{k} M_{k} }} (\theta ,\varphi )} } \cr} } $$
(28)
$$ {d^{{LM}} (lm,{l}'{m}') = (2L + 1)^{{1/2}} C^{{L{\left| M \right|}}} (lm,{l}'{m}')A^{M}_{{m{m}'}} } $$
(29)

Here, \( {R_{{N_{k} }} (z_{k} ,r)\,\,\,{\rm{and}}\,\,\,S_{{L_{k} M_{k} }} (\theta ,\varphi )} \) are the radial parts of normalized STOs and the spherical harmonics, respectively. See [18] for the exact definition of the Gaunt coefficients C LM and the quantities \( A_{mm'}^M \). We notice that, Eq. (28) can easily be derived by the use of the following expansion relation for the product of two spherical harmonics both with one and the same center [18]:

$$ {S^{ * }_{{lm}} (\theta ,\varphi )S^{{}}_{{{l}'{m}'}} (\theta ,\varphi ) = {1 \over {{\sqrt {4\pi } }}}{\sum\limits_{LM}^{} {d^{{L{\left| M \right|}}} (lm,{l}'{m}')S^{ * }_{{LM}} (\theta ,\varphi )} }} $$
(30)

Inserting Eqs. (26) and (28) into the integral in Eq. (25) leads to the three-center overlap integrals

$$ {S^{{acb}}_{{nlm,{n}'{l}'{m}',{\mu }'{\nu }'{\sigma }'}} (\zeta ,{\zeta }',{z}') = {\sqrt {4\pi } }{\int {\chi ^{*}_{{nlm}} (} }\zeta ,\vec{r}_{a} )\chi ^{{}}_{{{n}'{l}'{m}'}} ({\zeta }',\vec{r}_{c} )\chi ^{{}}_{{{\mu }'{\nu }'{\sigma }'}} ({z}',\vec{r}_{b} ){\mathop{\rm d}\nolimits} v} $$
(31)

Using the expansion formulae for electron charge densities (see Eq. (19) of [15]), the three-center overlap integrals [Eq. (31)] can be expressed through the two-center overlap integrals:

$$ {\eqalign{ & S^{{acb}}_{{nlm,{n}'{l}'{m}',{\mu }'{\nu }'{\sigma }'}} (\zeta ,{\zeta }',{z}') \cr & = {\mathop {\lim }\limits_{N \to \infty } }{\sum\limits_{\mu = 1}^N {{\sum\limits_{\nu = 0}^{\mu - 1} {{\sum\limits_{\sigma = - \nu }^\nu {W^{{\alpha N}}_{{nlm,{n}'{l}'{m}',\mu \nu \sigma }} (\zeta ,{\zeta }',z;\vec{R}_{{ca}} ,0)S^{{}}_{{\mu \nu \sigma ,{\mu }'{\nu }'{\sigma }'}} (z,{z}';\vec{R}_{{ab}} )} }} }} } \cr} } $$
(32)

where \( z = \zeta + \zeta ',\;S_{\mu \nu \sigma ,\mu '\nu '\sigma '}^{} (z,z';\vec R_{ab} ) \equiv S_{\mu \nu \sigma ,\mu '\nu '\sigma '}^{ab} (z,z')\,\,{\rm{and}}\,\,W^{\alpha N} \) is the two-center charge density expansion coefficient. Thus, the basic three-center one-electron integrals (Eq. 25) are determined solely from the two-center overlap integrals.

The results of calculation for the two-center two-electron integrals of central interaction potential f 000(0, r 21)=1/r 21 obtained with a Pentium III 800 MHz computer (using TURBO Pascal 7.0) are shown in Table 1. The comparative values obtained from the expansions in terms of different complete orthonormal sets of ψα-ETOs are shown in this table. As can be seen from the table, the computation time and accuracy of the computer results for different expansion formulae obtained from ψ0-ETOs, ψ1-ETOs and ψ–1-ETOs are satisfactory. Work is in progress for the computation of multicenter multielectron integrals of central and noncentral interaction potentials over STOs based on the formulae given in this work.

Table 1. Comparison of methods of computing two-center two-electron integrals of central interaction potential f 000(0,r 21)=1/r 21 obtained in the molecular coordinate system in a.u. for N 21=15, θbadb=45°, φbadb=270°

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guseinov, I. Addition theorems for Slater-type orbitals and their application to multicenter multielectron integrals of central and noncentral interaction potentials. J Mol Model 9, 190–194 (2003). https://doi.org/10.1007/s00894-003-0134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0134-0

Keywords

Navigation